TECHNICAL LIBRARY

As A SERVICE TO THE HYDROCARBON MEASUREMENT INDUSTRY, CRT-SERVICES CURATES THIS COLLECTION OF DIGITAL RESOURCES.

Try our online
Power Supply Product Selector!
DC Power Supply Selection Process 99
DIN Rail Selection Tables 100
DIN Rail
SDN-C Series (Single Phase Units, 120-240 Watts) 101
SDN-PTM Series (Single and Three Phase Units, 60-960 Watts) 106
SDN ${ }^{\text {TM }}$ DeviceNet ${ }^{\text {TM }}$ Models 112
SDN ${ }^{\text {TM }}$ Redundant Series 114
SDPTM Lower Power Series 118
SCP-X Extreme Environment 121
SCP Series (30 Watt; Single, Dual \& Triple) 124
SCL Series (4/10 Watt CE Linears) 126
SCD Series (30 Watt; Single \& Dual) 128
SDU DC UPS 130
SFL Series (12/24/48 V, Single Phase, 75-600 Watts) 134
Linears
Silver Line SL Series with screw terminals (Industry Standard Footprint Linears) 137
Other
GL Series, OEM Switchers 141
GL Compact Series, OEM Switch- ers. 158
SHP High Power Modulars 161
Copper Line 39 Series, Flexible O/P Configurations, Mid to High Power 164
DC/DC
SCD Series (30 Watt; Single \& Dual) 128
Frequently Asked Questions 241

SolaHD has a broad range of standard power supplies to suit almost any industrial application. Updated approvals and user friendly features make power system design easy. The product line includes one of the broadest ranges of DIN Rail and linear-based power supplies in the marketplace. The DIN Rail products feature full CE compliance (including all the elements of CE design engineers need to worry about: safety/LVD, EMC, and ingress protection). UL 508 approvals eliminate derating in UL 508 listed panel systems. Global inputs are available for installations around the world.

Three phase input options are available on many of the SDN DIN Rail products that convert 380/480 three phase directly to 24 Vdc . They provide extremely stable, regulated low voltage without the need for a step down transformer saving space and money.

SolaHD now offers a DC UPS to provide backup power to the power supply in the event of a blackout.

Linear vs. Switcher

SolaHD has provided both linear and switching technology products for many years. As a leading supplier of power products to the industrial market, both technologies are still important. Switching technology (most of Sola'HDs DIN Rail line) is the predominant method of AC-DC conversion for almost any type of electronic system sold today in the world, from PLC's to desktop PC's.

Linear vs. Switcher

Linear Power Supplies for a broad range of applications

The small size, lightweight and high efficiency of the switching products give them significant advantages over the linear technology products (Sola's SL and 83 series). SolaHD switching products provide well filtered and regulated DC of typically less than 1% deviation from the nominal output voltage.

Linears are about 50\% efficient while their switching counterparts are typically over 80\% efficient. Switchers are light enough to mount on a DIN Rail, while only the smallest linears are capable of being securely mounted to a DIN Rail. Linears are still popular today because they do provide very tight regulation (<.01\% typically), almost perfectly clean DC, fast transient response and their low component count helps provide a lower material cost for its user. Linears are typically open frame because of the excessive heat dissipation from their low efficiency.

SolaHD's industry standard linears, however, are available with optional covers for safety. Most linears are recognized to UL 60950 and cannot meet the stricter temperature requirements of the UL 508 Listing, such as with SolaHD's DIN Rail power supplies.

DC Power Supply Selection Process

Power supplies can be selected online by visiting our website. Enter your power requirements and a list of matching power supplies will list. You can also manually select a power supply by following the directions below:

1) Gather the required information.

- Input voltage and frequency?
- Wattage needed?
- Number of outputs?
- Voltage of each output?
- Amperage of each output?
- Don't forget to take into account the peak loading of each output.
- Battery Backup

2) Calculate the power (wattage) of the DC power supply you need. If more than one output is required, do the following calculation:

- Multiply the Voltage times the amperage of each output to calculate the wattage of each output. Next, add together the wattage of each output to get the total wattage for the supply.

3) Determine which models from the Power Supply Selection Chart (on the next page) meet all of the required specifications.
4) Download the specifications sheets from our web site (www.solaheviduty.com).
5) Check the mounting style, connections and physical size of the power supply to ensure its suitability for the intended application.
6) Check for applicable safety approvals for the country and application the power supply will be used in.

Try our online product selector at www.solahd.com/psselect.
Enter your power requirements and a list of matching power supplies will list. It's fast and easy.

Selection Worksheet
Output:
\qquad Vdc x \qquad Amps = \qquad Watts
\qquad
_ $\mathrm{Vdc} \times \ldots$ Amps $=$ Watts
_ V Vdc x \qquad Amps = \qquad Watts
\ldots Vdc $x \ldots$ Amps $=\ldots$ Watts
\qquad Vdc x \qquad Amps = \qquad Watts
\qquad Vdc x \qquad Amps = \qquad Watts
\ldots Vdc $x \ldots$ Amps $=\ldots$ Watts Add Watts from each output to calculate Total Watts = \qquad
Physical Dimensions:
\qquad Hx \qquad W x \qquad D Mounting:
\qquad DIN Rail
\qquad Chassis
\qquad Other

Other required features or options:

If you have filled out this form and cannot find the appropriate power supply, please fax (800-367-4384) or e-mail (tech@solahd.com) this information to the Technical Services group.

Power Supply Selection Table

This chart is intended only as a guide for selecting a series of DC power supply, some of the series listed may not work in all applications.

Series	Input Voltage				Output Voltage						Power Range (Total Watts)	Number of Outputs				Notes	Page
	DC	$\begin{aligned} & 115 \\ & \text { Vac } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { Vac } \end{aligned}$	$\begin{gathered} 380 / 480 \\ \text { Vac } \end{gathered}$	3.3 V	5 V	12 V	15 V	24 V	48 V		Single	Dual	Triple	>4		
SDNTM	X	X	X	x					x		60-960	x				- DIN Rail mount - DC Battery Back-up Available - Redundant options - NEC Class 2/DeviceNet ${ }^{\text {TM }}$	101
SDPTM	x	x	x			x	x	x	x	x	15-100	x				- DIN Rail mount compact	118
SCP	x	x	x		x	x	x	x	x	x	30-100	X	x	x		- DIN Rail mount/Chassis	124
SCD	X					X	X	x	x	X	30	x	X			- DIN Rail mount/Chassis - DC input	128
SCL		x	x			x	x	x			4-10	x	X	x		- DIN Rail mount/Chassis	126
SFL		X	x				X		x	X	75-600	x				- DIN Rail mount - Adjustable Pot, Red or UPS option	134
GL OEM Switchers		X	x		x	x	x	x	x		25-500	X	x	x	X	-40-110 Watt, open frame, Molex type connections - 200 Watt, enclosed with connected screw terminals	143
SHP		X	x			x	x	x	X	x	1500-2000	x	x	x	x	- Modular design - Screw Terminals (OEM) supply - Configurable Voltage Output	151
Silver Line Linears		X	x			x	X	X	x		15-244	x	x	x		- Industry standard footprint - Screw terminals and optional covers	137

DIN Rail Selection Guide

Visit our website at www.solahd.com or

SDN-C Compact DIN Rail Series

The SDN-C DIN rail power supplies are the next generation of the popular SDN series. These models combine high efficiency and compact size with new visual diagnostic LEDs to offer the most performance available from SolaHD. Essential industrial features such as Sag Immunity, Power Factor Correction, and universal voltage input have been retained in this series. Wide temperature operating range and parallel operation capability make the new SDN-C units suitable to a variety of industrial applications.

Features

- Compact packaging to save space on the DIN rail
- New visual diagnostic LEDs for input and output status at a glance
- High MTBF means high reliability and long life
- Higher efficiency saves energy and lowers amount of heat generated in panel
- PowerBoost ${ }^{\text {TM }}$ overload capability to start high inrush loads
- Accepts Universal voltage 85-264 Vac, $50 / 60 \mathrm{~Hz}$ input
- Single phase models meet SEMI F47 Sag Immunity standard
- Power Factor Correction (meets EN61000-3-2)
- Class I, Div. 2 Hazardous Locations
- ATEX approval (pending)
- Single and three-phase input available
- Patented DIN rail mounting clip
- User Adjustable output voltage accessible via front face
- Parallel capability standard
- Industrial grade design
$--25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ operation without derating
- Rugged metal case and DIN connector
- User-friendly
- LEDs for status
- Large, rugged, accessible screw terminals
- Easy on/off DIN mounting
- Fully tested and burned-in at factory
- RoHS compliant

Related Products

- SDN-P series

- SDP™ series
- SFL series
- SCP series
- SDU UPS

Applications

- Industrial Machine Control
- Process Control
- Conveying Equipment
- Material Handling
- Vending Machines
- Packaging Equipment
- Amusement Park Equipment
- Semiconductor Fabrication Equipment
- DeviceNet™

Accessories

- Chassis Mount Bracket (SDN-PMBRK2)

The SolaHD Difference

LED Light Status Conditions

	Normal	AC Power Loss	AC Input Low	No DC	High Load	Overload	Hot	Too Hot
Input	Green	-	Yellow	Green	Green	Green	Green	Green
Output	Green	-	Green	-	Yellow	Yellow	Green	-
Alarm	-	-	-	Red	Yellow	Red	Yellow	Yellow

SDN-C Specifications (Single Phase)

1. Not UL listed for DC input.
2. Input current ratings are conservatively specified with low input, worst case efficiency and power factor.
3. Losses are heat dissipation in watts at full load, nominal input line.
4. Ripple/noise is stated as typical values when measured with a 20 MHz , bandwidth scope and 50 Ohm resistor.
5. Peak current is calculated at 24 Volt levels.
6. Demonstrated through extended life test.
7. Contact tech support for operation at $-25^{\circ} \mathrm{C}$.

SDN-C Specifications (Three Phase)

Description	Catalog Number	
	SDN 20-24-480CC	SDN 40-24-480C
Input		
Nominal Voltage	380-480 Vac	
Two-phase input	Yes ${ }^{1}$	
-AC Range Continuous ${ }^{2}$	320-540 Vac	
-DC Range Continuous	450-760 Vdc	TBD
-DC Range Short Term ${ }^{3}$	420-780 Vdc	TBD
-Frequency	$50-60 \mathrm{~Hz}$	
Nominal Current ${ }^{4}$	$3 \times 0.9 \mathrm{~A}$ or $2 \times 1.3 \mathrm{~A}$	3×1.6 A
-Inrush Current Max.	Negligible	Negligible
Efficiency (Losses ${ }^{5}$)	93\% (42 W)	94\% (78 W)
Power Factor Correction	Active Power Factor Correction	
Output		
Turn on Time	Typ. 1s	
Voltage Rise Time	$<100 \mathrm{mS}$ full resistance load ($\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$)	
Power Back Immunity	$<35 \mathrm{~V}$	
Overvoltage Protection	> 30.5 but < 33 Vdc , auto recovery	
Nominal Voltage	24 V (24-28Vdc Adjustable)	
Voltage Regulation	$< \pm 2 \%$ overall	
Initial Voltage Setting	$24.5 \mathrm{~V} \pm 1 \%$	
-Ripple ${ }^{6}$	< 100mVpp	
PARD	PARD (Periodic and Random Deviation) $=200 \mathrm{mV}$ peak-peak max	
Nominal Current	20 A (480 W) (constant power, not constant)	40 A (960 W)
-Peak Current ${ }^{7}$	$1.5 \times$ Nominal Current for 4 seconds minimum while holding voltage $>20 \mathrm{Vdc}$	
-Current Limit	PowerBoost ${ }^{\text {TM }}$	
Derating (T amb $=60-70^{\circ} \mathrm{C}$)	typ. $24 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	typ. $48 \mathrm{~W} /{ }^{\circ} \mathrm{C}$
Holdup Time	$>20 \mathrm{~ms}$	$>15 \mathrm{~ms}$
Voltage Fall Time	$<50 \mathrm{mS}$ from 95\% to 10\% rated voltage @ full load ($\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$)	
Parallel Operation ${ }^{8}$	Single or parallel operation selectable via front switch. For redundant operation, use of external diode module is preferred	SDN 40 uses active paralleling
General		
Case	Fully enclosed metal housing with fine ventilation grid to keep out small parts.	
Min. Required Free Space	70 mm above and below, 10 mm left and right (same as manual) $\quad 70 \mathrm{~mm}$ above and below, 15 mm in front, 25 mm left \& right	
Max. Dimensions HxWxD (in/mm)	$4.85 \times 2.56 \times 4.68$ (123.3 $\times 85 \times 118.8)$	$4.85 \times 7.09 \times 4.85(123.3 \times 180 \times 123.17)$
Weight (lbs/g)	$2.8 \mathrm{lb}(1300 \mathrm{~g}) \quad 5.3 \mathrm{lb}(2400 \mathrm{~g})$	
EMC: -Emissions	EN61000-6-3:2001, Class B EN55011, EN55022 Radiated and Conducted including Annex. A, EN61000-3-2	
-Immunity	EN61000-6-1:2001, EN61000-6-2:2001, EN61000-4-2 Level 4, EN61000-4-3 Level 3, EN61000-4-6 Level 3, EN61000-4-4 Level 4 input andlevel 3 output. EN61000-4-5 Isolation class 4, EN61000-4-11, Semi F47 sag immunity	
Approvals	UL508 Listed, cULus; UL60950-1, cURus; IEC60950-1; ISA 12.12.01 Class 1 Div 2, CE (LVD 73/23 \& 2004/108/EC), (EMC 89/336 \& 93/68/EEC); EN61000-3-2,EN 60079-15 (Class 1, Zone 2)	
Temperature	Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Operation $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ full power, with linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Convection cooling, no forced air required). Operation up to 50% load permissible with sideways or front side up mounting orientation.	
Humidity	< 90\% RH, noncondensing; IEC 60068-2-2, 68-2-3	
Altitude	0 to 3000 meters (0 to 10,000 feet)	
Vibration	2.5(g) RMS, 10-2000 Hz (random); three axes for 20 minutes each - IEC 60068-2-6	
Shock	3(g) peak, three axes, 11mseconds for each axis - IEC 60068-2-27	
Warranty	5 Years	
MTBF	$>550,000$ hrs MTBF (Nominal voltage, full load, T ambient $=25^{\circ} \mathrm{C}$	
General Protection/Safety	Protected against short -circuit, overload, open circuit. Protection class 1 (IEC536), degree of protection IP20 (IEC 529), Safe low voltage: SELV (acc. EN60950)	
Over-Temperature Protection	LED Alarm, Output shutdown with automatic restart	
Status Indicators	Visual: 3 status LEDs (Input, Output, Alarm); Relay: SSR or dry relay contact, signal active when Vout $=18.5 \mathrm{Vdc}=+/-5 \%$	
Installation		
Fusing: -Input	Externally fused	
-Output	Not fused. Output is capable of providing high currents (PowerBoost) for motor load startup.	
Mounting	Simple snap-on to DIN TS35/7.5 or TS35/15 rail system. Unit should handle normal shock and vibration of industrial use and transportation without falling off the rail.	
Connections ${ }^{9}$	Input: screw terminals, Wiring for the connector will be ground on the left (when looking at the front of the unit), connector size range: 16-10AWG (1.5-6mm²) for solid conductors. Output: connector size range, wire gauge 6-7 AWG for SDN40; all other models: 16-10AWG ($1.5-6 \mathrm{~mm}^{2}$) for solid conductors. The connector color will be gray or off-white.	
1. SDN20 will operate at 75% load and SDN40 will operate at 50% load under loss of 1 phase. Units will shut down if thermal threshold is exceeded under this condition. 2. Unit passed input voltage overstress test at 600 Vac maximum without failure. 3. DC operation will require the user to provide the proper input circuit protection. 4. Input current ratings are specified with low input, line conditions, worst case efficiency values and power factor spikes. Input current at nominal input settings will be typically half these values. 5. Losses are heat dissipation in watts at full load, nominal line. 6. Ripple/noise is stated as typical values when measured with a 20 MHZ , bandwidth scope and 50 Ohm resister. 7. SDN 20 and SDN 40 unit will go to HICCUP mode. SDN 5 and SDN 10 will maintain min 4 secs to deliver 150% load then drops to almost zero V out. The output voltage will immediately drop to almost zero when load rises above 150%. 8. All models except the 40amp unit are capable of parallel operation by use of a jumper pin, accessible by the end user. 40amp has current sharing signal. 9. SDN40-24-480 only = Output signaling terminal block features (Shut down, Power Good, Current Monitor, Current Balance, signal GND). Visit our website at www.solahd.com or		

SDN-C Series Dimensions

Catalog Number	Dimensions - inches (mm)		
	$4.88(124)$	$1.97(50)$	$4.55(116)$
SDN 10-24-100C	$4.88(124)$	$2.36(60)$	$4.55(116)$
SDN 20-24-100C	$4.88(124)$	$3.42(87)$	$4.98(126.6)$
SDN 20-24-480CC	$4.85(123)$	$2.56(85)$	$4.68(118.8)$

Catalog Number	Dimensions - inches (mm)		
	H	W	D
SDN 40-24-480C	$4.85(123)$	$7.09(180)$	$4.85(123)$

SDN-C Series Mounting (cont.)

Chassis Mounting

Instead of snapping a Sola SDN ${ }^{\top M}$ unit on the DIN Rail, you can also attach it using the screw mounting set SDN-PMBRK2.

This set consists of two metal brackets, which replace the existing two aluminum profiles.

Dimensions

Detachment from DIN Rail:

SDN-P DIN Rail Series

The SDN DIN Rail power supplies provide industry leading performance. Sag Immunity, transient suppression and noise tolerant, the SDN series ensures compatibility in demanding applications. Power factor correction to meet European directives, hazardous location approvals and optional redundant accessories allow the SDN series to be used in a wide variety of applications. Wide operation temperature range, high tolerance to shock and vibration and reliable design make the SDN series the preferred choice of users everywhere.

Features

- Power Factor Correction (per EN61000-3-2)
- Auto Select 115/230 Vac, 50/60 Hz Input
- Single Phase models meet SEMI F47 Sag Immunity
- Class 1, Zone 2 Hazardous Locations
- ATEX approval on 2.5 through 10A, 24 Vdc single phase models
- Improved metal mounting clip
- DC OK Signal
- Adjustable Voltage
- Parallel Capability standard on all units

Related Products

- SDP ${ }^{\text {TM }}$ Series
- SFL Series
- SCP Series
- SCL Series
- SDU UPS

Applications

- Industrial/Machine Control
- Process Control
- Conveying Equipment
- Material Handling
- Vending Machines
- Packaging Equipment
- DeviceNet™
- Amusement Park Equipment
- Semiconductor Fabrication Equipment

Accessories

- Chassis Mount Bracket (SDN-PMBRK2)
- Single and three phase inputs available
- 12 Vdc and 48 Vdc single phase models available
- Highly efficient >90\% switching technology
- High MTBF and reliability
- RoHS compliant

Description	Catalog Number				
	SDN 2.5-24-100P	SDN 4-24-100LP	SDN 5-24-100P	SDN 10-24-100P	SDN 20-24-100P
Input					
Nominal Voltage	115/230 Vac auto select				
-AC Range	85-132/176-264 Vac				
-DC Range ${ }^{1}$	$90-375$ Vdc	210-375 Vdc			N/A
-Frequency	$47-63 \mathrm{~Hz}$				
Nominal Current ${ }^{2}$	1.3 A. / 0.7 A	2.1 A/1.0 A	2.2 A / 1.0 A	5 A / 2 A typ.	9 A 3.9 A
-Inrush current max.	typ. <25 A	typ. < 20 A		typ. < 40 A	
Efficiency (Losses ${ }^{3}$)	> 87.5\% typ. (8.6 W)	> 88\% typ. (13.1 W)	> 88\% typ. (16.4 W)	> 88\% typ. (32.7 W)	> 90\% typ. (48 W)
Power Factor Correction	Units Fulfill EN61000-3-2				
Output					
Nominal Voltage	$\begin{gathered} 24 \mathrm{Vdc} \\ (22.5-28.5 \mathrm{Vdc} \text { adj. }) \end{gathered}$	24 Vdc $(22.5-25.5 \mathrm{Vdc}$ adj.)	24 Vdc$(22.5-28.5 \mathrm{Vdc}$ adj.)		
-Tolerance	$< \pm 2 \%$ overall (combination Line, load, time and temperature related changes)				
-Ripple ${ }^{4}$	< 50 mVpp				
Overvoltage Protection	$>30 \mathrm{Vdc}$, but < 33 Vdc , auto recovery				
Nominal Current	2.5 A (60 W)	3.8 A (92 W)	5 A (120 W)	10 A (240 W)	20 A (480 W)
-Current Limit	Fold Forward (Current rises, voltage drops to maintain constant power during overload up to max peak current)				
Holdup Time ${ }^{5}$	> 50 ms	$>100 \mathrm{~ms}$			
Parallel Operation	Single or Parallel use is selectable via Front Panel Switch (SDN 2.5, 4 should not be used in parallel as Class 2 rating would be violated.)				
General					
EMC: -Emissions	EN61000-6-3, -4; Class B EN55011, EN55022 Radiated and Conducted including Annex A.				
-Immunity	EN61000-6-1, -2; EN61000-4-2 Level 4, EN61000-4-3 Level 3; EN61000-4-6 Level 3; EN61000-4-4 Level 4 input and Level 3 output; EN61000-4-5 Isolation Class 4, EN61000-4-11;				
Approvals	EN60950; UL508 Listed, cULus; UL60950, cRUus, CE (LVD 73/23 \& 93/68/EEC). EN61000-3-2, IEC60079-15 (Class 1, Zone 2, Hazardous Location, Groups A, B, C, D w/ T3A), SEMI F47 Sag Immunity. SDN 2.5 \& SDN 4 - UL60950 testing to include approval as Class 2 power supply in accordance with UL1310.				
Temperature	Storage: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ Operation. $-10^{\circ}-60^{\circ} \mathrm{C}$ full power with operation to $70^{\circ} \mathrm{C}$ possible with a linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Convection cooling, no forced air required). Operation up to 50% load permissible with sideways or front side up mounting orientation.				
Humidity	The relative humidity is < 90\% RH, noncondensing; IEC 68-2-2, 68-2-3.				
MTBF:	> 820,000 hours	> 640,000 hours		> 600,000 hours	> 510,000 hours
- Standard	Bellcore Issue 6 Method 1 Case 3 @ 40 ${ }^{\circ} \mathrm{C}$				MIL STD 217F @ 30 ${ }^{\circ} \mathrm{C}$
Warranty	5 years				
General Protection/ Safety	Protected against continuous short-circuit, overload, open-circuit. Protection Class 1 (IEC536), degree of protection IP20 (IEC 529) Safe low voltage: SELV (acc. EN60950)				
Status Indicators	Green LED and DC OK signal (N.O. Solid State Contact rated $200 \mathrm{~mA} \mathrm{/} 60$ Vdc)				
Installation					
Fusing -Input	Internally fused. External 10 A slow acting fusing for the input is recommended to protect input wiring.				
-Output	Outputs are capable of providing high currents for short periods of time for inductive load startup or switching. Fusing may be required for wire/loads if $2 x$ Nominal O/P current rating cannot be tolerated. Continuous current overload allows for reliable fuse tripping.				
Mounting	Simple snap-on system for DIN Rail TS35/7.5 or TS35/15 or chassis-mounted (optional screw mounting set SDN-PMBRK2 required).				
Connections	Input: IP20-rated screw terminals, connector size range: 16-10 AWG (1.5-6 mm²) for solid conductors. 16-12 AWG (0.5-4 mm^{2}) for flexible conductors. Output: Two connectors per output, connector size range: 16-10 AWG (1.5-6 mm²) for solid conductors.				
Case	Fully enclosed metal housing with fine ventilation grid to keep out small parts.				
-Free Space	25 mm above and below, 25 mm left and right, 10 mm in front		25 mm above and below, 25 mm left and right, 15 mm in front	70 mm above and below, 25 mm left and right, 15 mm in front	
H x W x D (inches/mm)	$\begin{gathered} 4.88 . \times 1.97 \times 4.55 \\ (124 \times 50 \times 116) \\ \hline \end{gathered}$	$\begin{gathered} 4.88 \times 2.56 \times 4.55 \\ (124 \times 65 \times 116) \\ \hline \end{gathered}$		$\begin{gathered} 4.88 \times 3.26 \times 4.55 \\ (124 \times 83 \times 116) \\ \hline \end{gathered}$	$\begin{aligned} & 4.88 \times 6.88 \times 4.55 \\ & (124 \times 175 \times 116) \end{aligned}$
Weight (lbs/kg)	1 (.45)	1.5 (.68)		2.2 (0.1)	3 (1.36)

1. Not UL listed for DC input.
2. Input current ratings are conservatively specified with low input, worst case efficiency and power factor.
3. Losses are heat dissipation in watts at full load, nominal input line.
4. Ripple/noise is stated as typical values when measured with a 20 MHz , bandwidth scope and 50 Ohm resistor.
5. Full load, 100 Vac Input $@ T_{\text {amb }}=+25^{\circ} \mathrm{C}$

6. Input current ratings are specified with low input, line conditions and worst case efficiency values. Input current at nominal input settings will be typically half these values.
7. Losses are heat dissipation in watts at full load, nominal line.
8. Ripple/ noise is stated as typical values when measured with a 20 MHz bandwidth
9. Unit shall not shutdown or 'hiccup' during overload or short circuit. Maximum current value shown shall be maintained indefinitely without damage to the supply. Voltage shall drop according to amount of overload to protect supply from damage. scope and 50 Ohm resister.

Visit our website at www.solahd.com or

SDN-P Specifications (Three Phase)

Description	Catalog Number				
	SDN 5-24-480	SDN 10-24-480	SDN 20-24-480C	SDN 30-24-480	SDN 40-24-480
Input					
Nominal Voltage	$1 \varnothing$ or 3Ø 380-480 Vac		10 or 3Ø 380-480 Vac ${ }^{1}$	3才 380-480 Vac	
-AC Range	340-576 Vac				
-DC Range ${ }^{2}$	450-820 Vdc				
-Frequency	$47-63 \mathrm{~Hz}$				
Nominal Current ${ }^{3}$	0.5 A	0.8 A	1.5 A	2.0 A	3.0 A
-Inrush current max.	typ. < 18 A			typ. < 30 A	
Efficiency (Losses ${ }^{4}$)	> 90\% typ. (12 W)	> 90\% typ. (48 W)		> 90\% typ. (72 W)	> 90\% typ. (96 W)
Power Factor Correction	Units Fulfill EN61000-3-2				
Output					
Nominal Voltage	24 Vdc (22.5-28.5 Vdc adj.)				
-Tolerance	$< \pm 2 \%$ overall (combination Line, load, time and temperature related changes)				
-Ripple ${ }^{5}$	< 50 mVpp				
Overvoltage Protection	> 30 Vdc , but < 33 Vdc , auto recovery				
Nominal Current	5 A (120 W)	10 A (240 W)	20 A (480 W)	$30 \mathrm{~A}(720 \mathrm{~W})$	40 A (960 W)
-Peak Current	6A, $2 x$ Nominal Current <2 sec.	12A, $2 x$ Nominal Current <2 sec.	$\begin{gathered} 25 \mathrm{~A}, \\ 2 \times \text { Nominal Current }<2 \\ \text { sec. } \end{gathered}$	35A, 2x Nominal Current $<2 \mathrm{sec}$.	45A, 2x Nominal Current $<2 \mathrm{sec}$
-Current Limit	Fold Forward (Current rises, voltage drops to maintain constant power during overload up to max peak current)				
Holdup Time ${ }^{6}$	> 40 ms		$>28 \mathrm{~ms}$	$>20 \mathrm{~ms}$	
Parallel Operation	5 A through 30A units may be passively paralleled by selecting the "P" position of the switch on the unit. The SDN 40 contains active current balancing.				
General					
EMC: -Emissions	EN61000-6-3, -4; Class B EN55011, EN55022 Radiated and Conducted including Annex A.				
-Immunity	EN61000-6-1, -2; EN61000-4-2 Level 4, EN61000-4-3 Level 3; EN61000-4-6 Level 3; EN61000-4-4 Level 4 input and Level 3 output; EN61000-4-5 Isolation Class 4, EN61000-4-11;				
Approvals	CB Scheme, EN60950; UL508 Listed, cULus; UL60950, cRUus, CE (LVD 73/23 \& 93/68/EEC). EN61000-3-2, UL60079-15 Class 1, Zone 2 Hazardous Location, Groups IIA, IIB, IIC w/T3.				
Temperature	Storage: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ Operation. $-10^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ full power with operation to $70^{\circ} \mathrm{C}$ possible with a linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Convection cooling, no forced air required). Operation up to 50% load permissible with sideways or front side up mounting orientation. The relative humidity is $<90 \% \mathrm{RH}$, noncondensing; IEC 68-2-2, 68-2-3.				
MTBF:	> 1,110,000 hours	> 940,000 hours	> 550,000 hours	> 620,000 hours	> 490,000 hours
- Standard	MIL STD 217F @ 300				
Warranty	5 years				
General Protection/ Safety	Protected against continuous short-circuit, overload, open-circuit. Protection Class 1 (IEC536), degree of protection IP20 (IEC 60529) Safe low voltage: SELV (acc. EN60950)				
Status Indicators	Green LED on when $\mathrm{V}_{\text {out }}=18 \mathrm{~V}$ or greater.				
Installation					
Fusing -Input	Internally fused				
-Output	Outputs are capable of providing high currents for short periods of time for inductive load startup or switching. Fusing may be required for wire/loads if $2 \times$ Nominal O / P current rating cannot be tolerated. Continuous current overload allows for reliable fuse tripping.				
Mounting	Simple snap-on system for DIN Rail TS35/7.5 or TS35/15 or chassis-mounted (optional screw mounting set SDN-PMBRK2 required).				
Connections ${ }^{7}$	Input: IP20-rated screw terminals, connector size range: 16-10 AWG (1.5-6 mm²) for solid conductors. 16-12 AWG (0.5-4 mm²) for flexible conductors. Output: Two connectors per output, connector size range: 16-10 AWG (1.5-6 mm²) for solid conductors.				
Case	Fully enclosed metal housing with fine ventilation grid to keep out small parts.				
-Free Space	25 mm above and below, 25 mm left and right, 15 mm in front		70 mm above and below, 25 mm left and right, 15 mm in front		
H x W x D (inches/mm)	$\begin{gathered} 4.88 \times 2.91 \times 4.55 \\ (124 \times 73 \times 116) \\ \hline \end{gathered}$	$\begin{aligned} & 4.88 \times 3.5 \times 4.55 \\ & (124 \times 89 \times 116) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.88 \times 5.9 \times 4.55 \\ & (124 \times 150 \times 116) \end{aligned}$	$\begin{aligned} & 4.88 \times 9.72 \times 4.55 \\ & (124 \times 247 \times 116) \end{aligned}$	$\begin{aligned} & 4.88 \times 11.1 \times 4.55 \\ & (124 \times 282 \times 116) \end{aligned}$

1. For the SDN 20-24-480C, single phase input is permissible, but output is derated to 75% (15 Amps @ 24 Vdc).
2. Not UL listed for DC input.
3. Input current ratings are conservatively specified with low input, worst case efficiency and power factor.
4. Losses are heat dissipation in watts at full load, nominal input line.
5. Ripple/noise is stated as typical values when measured with a 20 MHz , bandwidth scope and 50 Ohm resistor.
6. Full load, 100 Vac Input $@ T_{\text {amb }}=+25^{\circ} \mathrm{C}$
7. For the SDN 40-24-480, output: one (+) two (-) connectors, size range 16-5 AWG ($1.5016 \mathrm{~mm}^{2}$) solid conductor.

SDN-P Series Dimensions

Catalog Number	Dimensions - inches (mm)				
	H	W	D		
12 Vdc					
SDN 9-12-100P	$4.88(124)$	$2.56(65)$	$4.55(116)$		
SDN 16-12-100P	$4.88(124)$	$3.26(83)$	$4.55(116)$		
$\mathbf{2 4 ~ V d c ~}$					
SDN 2.5-24-100P	$4.88(124)$	$1.97(50)$	$4.55(116)$		
SDN 4-24-100LP	$4.88(124)$	$2.56(65)$	$4.55(116)$		
SDN 5-24-100P	$4.88(124)$	$2.56(65)$	$4.55(116)$		
SDN 5-24-480	$4.88(124)$	$2.91(73)$	$4.55(116)$		
SDN 10-24-100P	$4.88(124)$	$3.26(83)$	$4.55(116)$		
SDN 10-24-480	$4.88(124)$	$3.5(89)$	$4.55(116)$		
					48 Vdc
SDN 5-48-100P	$4.88(124)$	$3.26(83)$	$4.55(116)$		

Catalog Number	Dimensions - inches (mm)		
	H	W	D
SDN 20-24-100P	$4.88(124)$	$6.88(175)$	$4.55(116)$
SDN 20-24-480C	$4.88(124)$	$5.90(150)$	$4.55(116)$
SDN 30-24-480	$4.88(124)$	$9.72(247)$	$4.55(116)$
SDN 40-24-480	$4.88(124)$	$11.10(282)$	$4.55(116)$

SDN-P Series Mounting

DIN Rail Mounting

Snap on the DIN Rail:

1. Tilt unit slightly backwards
2. Put it onto the DIN Rail
3. Push downwards until stopped
4. Push at the lower front edge to lock
5. Shake the unit slightly to ensure that the retainer has locked

Alternative Panel Mount: Using the optional SDN-PMBRK2 accessory, the unit can be screw mounted to a panel.

Detachment from DIN Rail:

Chassis Mounting

Dimensions

Instead of snapping a Sola SDN ${ }^{\text {TM }}$ unit on the DIN Rail, you can also attach it using the screw mounting set SDN-PMBRK2.

This set consists of two metal brackets, which replace the existing two aluminum profiles.

SDN ${ }^{\text {TM }}$ DeviceNet ${ }^{\text {TM }}$ Series

As members of the Open Device Net $^{\text {TM }}$ Vendors Association (ODVA), SolaHD has designed two power supplies specifically for DeviceNet ${ }^{\text {TM }}$ applications. Sola's SDN DeviceNet ${ }^{\text {TM }}$ models meet ODVA specifications for power supplies for either thin or thick cable applications.

The SDN 4-24-100LP has the highest output current possible while still meeting the requirements for NEC Class 2 and UL 1310. This is necessary for installations to meet the National Electrical Code (NEC) or the Canadian Electric Code (CE code) without the need for secondary fusing.

The SDN 10-24-100P is designed for installations that utilize the full 8A capability of the Thick Cable system. Note - local codes may prohibit the use of the full capacity of the power supply.

Features (General)

- Power Factor Correction
- SEMI F47 Sag Immunity Standard
- Class 1, Div. 2 Hazardous Locations
- DC Okay Signal
- Industrial Grade Design
- Indefinite short-circuit, overvoltage and overtemperature protection
- Rugged metal case and DIN connector
- Narrow width on rail for space critical applications
- User-friendly front panel
- Large, rugged, accessible multiple connection screw terminations
- Easy installation
- High efficiency for cooler operation and less heat losses
- High MTBF \& reliability
- High grade and low stress design components
- No fans used or required
- RoHS Compliant
- Five year warranty

Features (SDN 4-24-100LP only)

- Meets the requirements of NEC Class 2 \& UL 1310
- No derating from $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, operation to $70^{\circ} \mathrm{C}$ possible with a linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Related Products

- SDPTM Series
- SCD Series
- SCP Series
- SCL Series

Applications

- Industrial Control
- Process Control
- Building Automation
- DeviceNet™

SDN ${ }^{\text {TM }}$ DeviceNet ${ }^{\text {TM }}$ Specifications

Description	Catalog Number	
	SDN 5-24-100P	SDN 10-24-100P
Input		
Nominal Voltage	115/230 Vac auto select	
-AC Range	85-132/176-264 Vac	
-DC Range ${ }^{1}$	210-375 Vdc	
-Frequency	$47-63 \mathrm{~Hz}$	
Nominal Current ${ }^{2}$	2.2 A / 1.0 A	5 A / 2 A typ.
-Inrush current max.	typ. < 20 A	typ. < 40 A
Efficiency (Losses ${ }^{3}$)	> 88\% typ. (16.4 W)	> 88\% typ. (32.7 W)
Power Factor Correction	Units fulfill EN61000-3-2	
Output		
Nominal Voltage	24 Vdc$(22.5-28.5 \mathrm{Vdc}$ adj.)	
-Tolerance	$< \pm 2 \%$ overall (combination Line, load, time and temperature related changes)	
-Ripple ${ }^{4}$	< 50 mV pp	
Overvoltage Protection	> 30 Vdc , but < 33 Vdc , auto recovery	
Nominal Current	5 A (120 W)	10 A (240 W)
-Current Limit	Fold Forward (Current rises, voltage drops to maintain constant power during overload up to max peak current)	
Holdup Time ${ }^{5}$	$>100 \mathrm{~ms}$	
Parallel Operation	Single or Parallel use is selectable via Front Panel Switch (SDN 2.5, 4 should not be used in parallel as Class 2 rating would be violated.)	
General		
EMC: -Emissions	EN61000-6-3, -4; Class B EN55011, EN55022 Radiated and Conducted including Annex A.	
-Immunity	EN61000-6-1, -2; EN61000-4-2 Level 4, EN61000-4-3 Level 3; EN61000-4-6 Level 3; EN61000-4-4 Level 4 input and Level 3 output; EN61000-4-5 Isolation Class 4, EN61000-4-11;	
Approvals	EN60950; UL508 Listed, cULus; UL60950, cRUus, CE (LVD 73/23 \& 93/68/EEC). EN61000-3-2, IEC60079-15 (Class 1, Zone 2, Hazardous Location, Groups A, B, C, D w/ T3A temp class up to $60^{\circ} \mathrm{C}$ Ambient.) SEMI F47 Sag Immunity. SDN 2.5 \& SDN 4 - UL60950 testing to include approval as Class 2 power supply in accordance with UL1310.	
Temperature	Storage: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ Operation. $-10^{\circ} \ldots-60^{\circ} \mathrm{C}$ full power with operation to $70^{\circ} \mathrm{C}$ possible with a linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Convection cooling, no forced air required). Operation up to 50% load permissible with sideways or front side up mounting orientation. The relative humidity is $<90 \% \mathrm{RH}$, noncondensing; IEC 68-2-2, 68-2-3.	
MTBF:	> 640,000 hours	> 600,000 hours
- Standard	Bellcore Issue 6 Method 1 Case 3 @ 40 C	
Warranty	5 years	
General Protection/Safety	Protected against continuous short-circuit, overload, open-circuit. Protection Class 1 (IEC536), degree of protection IP20 (IEC 529) Safe low voltage: SELV (acc. EN60950)	
Status Indicators	Green LED and DC OK signal (N.O. Solid State Contact rated $200 \mathrm{~mA} / 60 \mathrm{Vdc})$	
Installation		
Fusing -Input	Internally fused. External 10 A slow acting fusing for the input is recommended to protect input wiring.	
-Output	Outputs are capable of providing high currents for short periods of time for inductive load startup or switching. Fusing may be required for wire/loads if $2 x$ Nominal O/P current rating cannot be tolerated. Continuous current overload allows for reliable fuse tripping.	
Mounting	Simple snap-on system for DIN Rail TS35/7.5 or TS35/15 or chassis-mounted (optional screw mounting set SDN-PMBRK2 required).	
Connections	Input: IP20-rated screw terminals, connector size range: 16-10 AWG (1.5-6 mm^{2}) for solid conductors. 16-12 AWG (0.5-4 mm²) for flexible conductors. Output: Two connectors per output, connector size range: 16-10 AWG (1.5-6 mm²) for solid conductors.	
Case	Fully enclosed metal housing with fine ventilation grid to keep out small parts.	
-Free Space	25 mm above and below, 25 mm left and right, 15 mm in front	70 mm above and below, 25 mm left and right, 15 mm in front
H x W x D (inches/mm)	$4.88 \times 2.56 \times 4.55(124 \times 65 \times 116)$	$4.88 \times 3.26 \times 4.55(124 \times 83 \times 116)$
Weight (lbs/kg)	1.5 (.68)	2.2 (0.10)

1. Not UL listed for DC input.
2. Input current ratings are conservatively specified with low input, worst case efficiency and power factor.
3. Losses are heat dissipation in watts at full load, nominal input line.
4. Ripple/noise is stated as typical values when measured with a 20 MHz , bandwidth scope and 50 Ohm resistor.
5. Full load, 100 Vac Input $@ T_{\text {amb }}=+25^{\circ} \mathrm{C}$

SDN ${ }^{\text {TM }}$ Series Redundant Options

The SDN Series standard options allow for operation in a wide variety of applications. With the addition of an external redundancy module, the SDN can also be used for true redundant operation including 2 N and $\mathrm{N}+\mathrm{x}$ configurations.

All SDN units include built in current sharing for parallel and redundant operation. All models ending in P also include a DC OK status relay contact. The external modules SDN 2.5-20RED and SDN 30/40RED increase the reliability by isolating the supplies and adding more signal options. Paralleling for increased power does not require the use of these modules.

Module Compatibility

Two separate modules are available to provide the maximum flexibility in size, cost and signaling capability. Refer to the chart below for information on which module can be used for each SDN power supply.

Power Rating - A simple Yes or No indication that this module can or cannot handle the power rating of that power supply.

Input/Output Signals - Yes indicates that each power supply would have an independent relay contact to provide power supply status, and the DC bus output from the redundant module has it's own DC OK relay contact. Output only indicates that only the output of the redundant module would have a DC OK relay contact.

C

Related Products

- SDN ${ }^{\text {™ }}$ Series
- SFL Series

Applications

- Process Control
- Remote Location
- Critical Production

Features

- DC OK Relay Contact
- True Isolation
- High availability
- SDN features and quality

Redundancy Module Compatibility Chart

Single Phase SDN Series						
		SDN 2.5-24-100P*	SDN 4-24-100P*	SDN 5-24-100P	SDN 10-24-100P	SDN 20-24-100P
SDN $25-20 R E D$	Power Rating	Yes	Yes	Yes	Yes	Yes
SDN 2.5-20RED	Input / Output Signals	Yes	Yes	Yes	Yes	Yes
SDN 30/40RED	Power Rating	Yes	Yes	Yes	Yes	Yes
	Input / Output Signals	Yes	Yes	Yes	Yes	Yes
Three Phase SDN Series						
		SDN 5-24-480	SDN 10-24-480	SDN 20-24-480	SDN 30-24-480	SDN 40-24-480
SDN 2.5-20RED	Power Rating	Yes	Yes	Yes	No	No
	Input / Output Signals	Output Only	Output Only	Output Only	N/A	N/A
SDN 30/40RED	Power Rating	Yes	Yes	Yes	Yes	Yes
	Input / Output Signals	Yes	Yes	Yes	Yes	Yes

[^0]
SDN ${ }^{\text {TM }}$ Redundant Series Specifications for SDN2.5-20RED and SDN 30/40RED

Catalog Number		
Description	SDN 2.5-20RED	SDN 30/40RED
Concept		
By means of a separate redundancy module, you can interconnect several identical SDN power supply units in a $\mathrm{N}+1$ redundant mode. These external modules decouple the power supply outputs from each other so that, in case of failure, one power supply unit cannot overload the other units. The modules incorporate DC OK relay contacts. The switch on front of the SDN power supply should be placed in parallel mode (not single mode) when power supplies are used with redundant module.		
Electrical Characteristics		
Voltage		
-Nominal Value	24 Vdc	
-Max. Rated	35 V	
Voltage Drop		
$-V_{\text {in }}->V_{\text {out }}$	Typ. 0.6 V	
Current Handling Capacity		
-Maximum Value	20 A	40 A
Inverse Battery Protection	Yes	
Connection	Via captive screw terminals	
-Connector size range	Solid: 16-10 AWG (1.5-6 mm²) Stranded: 16-12 AWG (1.5-4 mm²)	Solid: 16-5 AWG (1.5-16 mm²) Stranded: 16-8 AWG (1.5-10 mm²)
	Note: GND must be connected to module for voltage monitor to operate properly. See Connectors and Wiring diagrams on next page.	
Relay Contacts		
DC Okay Contacts (qty) description	(1) $\mathrm{V}_{\text {out }}$ "OK" - N.O. \& N.C. Contact	(1) $V_{\text {out }}$ "OK" - N.O. Contact (2) $\mathrm{V}_{\text {in }}$ "OK" - N.O. Contact
-Voltage Set Point	$>18 \mathrm{Vdc} \pm 5 \%$	
-Contact Rating	30 Vdc @ 2A / 250 V @ 2A	
DC OK LED	$\mathrm{V}_{\text {out }}$ "OK" Green LED	
-Voltage Set Point	$>18 \mathrm{Vdc} \pm 5 \%$	
Dimensions		
H x W x D - inches (mm)	4.88 in $\times 1.97$ in $\times 4.55$ in ($124 \mathrm{~mm} \times 50 \mathrm{~mm} \times 116 \mathrm{~mm}$)	4.88 in $\times 2.56$ in $\times 4.55$ in ($124 \mathrm{~mm} \times 65 \mathrm{~mm} \times 116 \mathrm{~mm}$)
Free Space for Ventilation inches (mm)	Above/Below: $0.39 \mathrm{in} .(10 \mathrm{~mm})$ recommended Left/Right: 0.39 in . $(10 \mathrm{~mm})$ recommended	
Weight lbs (kg)	1.38 (625)	1.43 (646)
General		
Ambient Temperature	Storage: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ Operation: $-10^{\circ} \mathrm{C} . .+60^{\circ} \mathrm{C}$ full power with operation to $70^{\circ} \mathrm{C}$ possible with a linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Convection cooling, no forced air required). Operation up to 50% load permissible with sideways or front side up mounting orientation. The relative humidity is < 90\% RH, noncondensing.	

Wiring Diagram for SDN 2.5-20RED

Notes:

1. The Common (marked "COM -") connection to the module is required for voltage monitoring (DC OK Contacts), and is not meant to be part of the current path from the power supply to the load.
2. Protective earth connection only provides protective ground to the metal case of the module. This connection is isolated from the positive and common connections.

Wiring Diagram for SDN 30/40RED

Notes:

1. The Common (marked "COM -") connection to the module is required for voltage monitoring (DC OK Contacts), and is not meant to be part of the current path from the power supply to the load.
2. Protective earth connection only provides protective ground to the metal case of the module. This connection is isolated from the positive and common connections.

SDPTM Low Power DIN Rail Series

The compact, lightweight DIN Rail power supplies come in output voltages from 5 to 48 Vdc and power ratings of up to 100 Watts. These extra small, efficient units are designed specifically for the industrial environment. Each unit is rated from $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, with no derating necessary until above $60^{\circ} \mathrm{C}$.

Many extra "industrial" features are standard for the SDP PowerBoostTM overload circuitry can start up industrial loads (i.e. motors, relays, solenoids and DC-DC converters), that can cause ordinary power supplies to foldback or shutdown. Each unit contains a DC indicator and front panel adjustment potentiometer. With the Sola SDP series, you can count on a high grade design.

Features

- Ultra slim 15W footprint
- No tools required for mounting
- Adjustable output
- PowerBoost ${ }^{\text {TM }}$ industrial overload design
- Overvoltage, short circuit protection
- NEC Class 2 Current Limited
- Continuous short circuit protection
- Low output noise
- Screw terminal connections
- RoHS Compliant
- Three year warranty

Selection Table

Catalog Number	DC Output Voltage	Output Current	Ripple / Noise	Size (H x W x D)
SDP 5-5-100T	$5-6 \mathrm{~V}$	5 A	<50 mVpp	$\begin{aligned} & 2.95 \mathrm{in} \times 1.77 \text { in } \times 3.58 \text { in } \\ & (75 \mathrm{~mm} \times 45 \mathrm{~mm} \times 91 \mathrm{~mm}) \end{aligned}$
SDP 2-12-100T	10-12 V	3-2.5 A		
SDP 3-15-100T	12-15V	4.2-3.4 A		
SDP 1-48-100T	48-56V	1 A		
SDP 06-24-100T	24-28 Vdc	0.6 A		$\begin{gathered} 2.95 \mathrm{in} \times 0.9 \mathrm{in} \times 3.8 \mathrm{in} \\ (75 \mathrm{~mm} \times 22.8 \mathrm{~mm} \times 96.7 \mathrm{~mm}) \end{gathered}$
SDP 1-24-100T		1.3 A		$\begin{aligned} & 2.95 \mathrm{in} \times 1.77 \mathrm{in} \times 3.58 \mathrm{in} \\ & (75 \mathrm{~mm} \times 45 \mathrm{~mm} \times 91 \mathrm{~mm}) \end{aligned}$
SDP 2-24-100T		2.1 A		
SDP 4-24-100LT		3.8 A		$\begin{gathered} 2.95 \mathrm{in} \times 2.85 \mathrm{in} \times 3.8 \mathrm{in} \\ (75 \mathrm{~mm} \times 72.5 \mathrm{~mm} \times 96.7 \mathrm{~mm}) \end{gathered}$
SDP 4-24-100RT*		4.2 A		

* NEC Class 1

Visit our website at www.solahd.com or

SDP ${ }^{\text {TM }}$ Series Specifications (24 V models)

Description	Catalog Number				
	SDP 06-24-100T	SDP 1-24-100T	SDP 2-24-100T	SDP 4-24-100LT	SDP 4-24-100RT
Input					
Input Voltage ${ }^{1}$	85-264 Vac, 90-375 Vdc			85-132 / 176-264 Vac, 210-375 Vdc	
Input Frequency	47-63 Hz				
Input Current	0.4 A / 0.25 A	0.7 A / 0.4 A	1.1 A / 0.7 A	1.8 A / 1.0 A	2.2 A / 1.2 A
External Fusing	Not required. Unit provides internal fuse (T3A, not accessible)				
Hold-Up Time	$>25 \mathrm{~ms}$				
Efficiency	> 80\% typ.	> 83\% typ.	> 86\% typ.	> 88\% typ.	
Losses	< 3.75 W typ.	<6.1 W typ.	<8.1 W typ.	< 12 W typ.	
Output					
Output Voltage	24 V (22.5-28.5 Vdc Adj.)			24 V (24-25.7 Vdc Adj.)	24 V (22.5-28.5 Vdc Adj.)
Voltage Regulation	Static $0.5 \% \mathrm{~V}_{\text {out }}$, dynamic $+2 \% \mathrm{~V}_{\text {out }}$ overall				
Ripple/Noise ${ }^{2}$	< 50 mVpp				
Overvoltage Protection (OVP)	> 30 Vdc , but $<33 \mathrm{Vdc}$, auto recovery			$>26 \mathrm{Vdc}, \text { but < } 27.2$ Vdc, auto recovery	$>30 \mathrm{Vdc}$, but < 33 Vdc , auto recovery
Output Noise Suppression	Radiated EMI values below EN61000-6-2				
Rated Continuous Loading	0.63 A @ 24 Vdc / 0.54 A @ 28 Vdc	1.3 A @ $24 \mathrm{Vdc} /$ 1.1 A @ 28 Vdc	2.1 A @ $24 \mathrm{Vdc} /$ 1.8 A @ 28 Vdc	3.8 A @ 24.5 Vdc	4.2 A @ 24.5 Vdc / 3.6 A @ 28 Vdc
Overload Behavior	Continuous operation at overload/short-circuit: up to $1.5 \times$ Nominal Current Continuous				
Protection	Unit is continuously protected against short-circuit, overload and open-circuit.				
Power Back Immunity	35 V				
Installation					
Status Indicators	Green LED on, when $\mathrm{V}_{\text {out }}$ "OK".				
Case \& Mounting	Molded plastic housing using UL 94 approved flameproof material rating 94 V -2. Simple snap-on to DIN TS35/7.5 or TS35/15 rail system.				
Dimensions					
($\mathrm{x} \times \mathrm{W} \times \mathrm{D}$) ($\mathrm{in} / \mathrm{mm}$)	$\begin{gathered} 2.95 \times 0.9 \times 3.8 \\ (75 \times 22.8 \times 96.7) \\ \hline \end{gathered}$	2.95×1.7	$\times 45 \times 91)$	$\begin{aligned} & 2.95 \times 2.85 \times 3.8 \\ & (75 \times 72.5 \times 96.7) \\ & \hline \end{aligned}$	
Weight - lbs (kg)	$0.35 \mathrm{lbs}(.16 \mathrm{~kg}$)			$0.7 \mathrm{lbs}(.32 \mathrm{~kg})$	
Mounting Orientation	Standard: Vertical; Optional: Horizontal or on top (Contact Technical Services).				
Ventilation/Cooling -Free space for cooling	Normal convection, no fan required; Above/below: 25 mm recommended.				
Connection -Connector size range	Input: screw terminals, connector size range: 20-12AWG (1.5-6 mm) for solid or stranded conductors.				
General					
Temperature	Storage: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ Operation: $-10^{\circ} \ldots+60^{\circ} \mathrm{C}$ full power with linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. (Convection cooling, no forced air required).				
MTBF	$>500,000$ hours according to Telcordia/Bellcore Document SR-332, Issue 1.				
Humidity	Up to 90\% RH, noncondensing; IEC 68-2-2, 68-2-3				
Electromagnetic Emissions (EME)	EN61000-6-3 (Includes EN61000-6-4) Class B (EN 55022) incl. Annex A				
Electromagnetic Immunity (EMI)	EN61000-6-2 (Includes EN61000-6-1) (EN55024) Criterion A: no derogation of performance				
Safe Low Voltage	SELV (acc. EN60950)				
Protection Class/Voltage	IP20 (IEC529), Protection Class 1 (IEC536)				
Warranty	3 years				
Safety					
CB Scheme, EN60950, UL60079-15 (Class 1, Zone 2 Hazardous Locations, Temp Class T3), UL508 Listed, cULus, UL 60950, cURus, CE (LVD 73/23 \& 93/68/EEC). (EMC 89/336 \& 93/68/EEC). EN61000-3-2, NEC Class 2 power supply acc. To NFPA 70 art. 725-41 (a)(2). ${ }^{3}$					

Notes:

1. Not UL listed for DC input.
2. Ripple/noise is stated as typical values when measured with a 20 MHz , bandwidth scope and 50 Ohm resistor.
3. For all models except SDP 4-24-100LT.

Visit our website at www.solahd.com or contact Technical Services at (800) 377-4384 with any questions.

SDPTM Series Specifications (Other Voltages)

Description	Catalog Number			
	SDP 5-5-100T	SDP 2-12-100T	SDP 3-15-100T	SDP 1-48-100T
Input				
Input Voltage ${ }^{1}$	85-264 Vac, 90-375 Vdc			
Input Frequency	$47-63 \mathrm{~Hz}$			
Input Current	0.6 A @ 102 Vac; 0.33 A @196 Vac		1.0 A @ 102 Vac; 0.6 A @ 196 Vac	$\begin{aligned} & \text { <1.0 A @ } 100 \text { Vac; } \\ & \text { <0.6 A @ } 196 \text { Vac } \end{aligned}$
External Fusing	Not required. Unit provides internal fuse (T3A, not accessible)			
Hold-Up Time	$>25 \mathrm{~ms}$			
Efficiency	> 80\% typ.		> 86\% typ.	> 90\% typ.
Losses	7.5 W typ. 8.1 W typ.		< 8.1 W typ.	
Output				
Output Voltage	$5-5.5 \mathrm{Vdc}(5-6 \mathrm{~min}$ adj.)	12 Vdc (9.9-12.1 min adj.)	15 Vdc (11.9-15.1 min adj.)	$48 \mathrm{Vdc}(48-56 \mathrm{~min}$ adj.)
Voltage Regulation	<2\% Dynamic; < 0.5\% Static			
Ripple/Noise ${ }^{2}$	$<50 \mathrm{mVpp}$			
Overvoltage Protection (OVP)	> 6.7 Vdc	> 18 Vdc	$>20 \mathrm{Vdc}$	> 56 Vdc
Output Noise Suppression	Radiated EMI values below EN61000-6-2			
Rated Continuous Loading	$\mathrm{l}_{\text {out }}=5 \mathrm{~A} @ \mathrm{~V}_{\text {out }}=5.1 \mathrm{~V}$	$\begin{aligned} & \text { 3A @ } 10 \text { Vdc } \\ & \text { 2.5A @12 Vdc } \end{aligned}$	4.2A @ 12 Vdc 3.4A @ 15 Vdc	$\begin{gathered} \text { Up to 1.05A @ } 48 \text { V } \\ 0.9 \mathrm{~A} @ 56 \mathrm{~V} \end{gathered}$
Overload Behavior	Continuous operation at overload/short-circuit: up to $1.5 \times$ Nominal Current Continuous			
Protection	Unit is continuously protected against short-circuit, overload and open-circuit.			
Power Back Immunity	10 V			80 V
Installation				
Status Indicators	Green LED on, when $\mathrm{V}_{\text {out }}$ "OK".			
Case \& Mounting	Molded plastic housing using UL 94 approved flameproof material rating 94V-2. Simple snap-on to DIN TS35/7.5 or TS35/15 rail system.			
Dimensions				
($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$) (in/mm)	$2.95 \times 1.77 \times 3.58(75 \times 45 \times 91)$			
Weight - lbs (kg)	$0.5 \mathrm{lbs}(.23 \mathrm{~kg})$			
Mounting Orientation	Standard: Vertical; Optional: Horizontal or On Top (Contact Technical Services).			
Ventilation/Cooling -Free space for cooling	Normal convection, no fan required; Above/below: 25 mm recommended.			
Connection -Connector size range	Input: screw terminals, connector size range: 20-12 AWG (1.5-6 mm²) for solid or stranded conductors.			
General				
Temperature	Storage: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ Operation: $-10^{\circ} \ldots+60^{\circ} \mathrm{C}$ full power with linear derating to half power from $60^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. (Convection cooling, no forced air required).			
MTBF	> 500,000 hours according to Telcordia/Bellcore Document SR-332, Issue 1.			
Humidity	Up to 90\% RH, noncondensing; IEC 68-2-2, 68-2-3			
Electromagnetic Emissions (EME)	EN61000-6-3 (Includes EN61000-6-4) Class B (EN 55022) incl. Annex A			
Electromagnetic Immunity (EMI)	EN61000-6-2 (Includes EN61000-6-1) (EN55024) Criterion A: no degradation of performance			
Safe Low Voltage	SELV (acc. EN60950)			
Protection Class/Voltage	IP20 (IEC529), Protection Class 1 (IEC536)			
Warranty	3 years			
Safety				
CB Scheme, EN60950, UL60079-15 (Class 1, Zone 2 Hazardous Locations, Temp Class T3), UL508 Listed, cULus, UL 60950, cURus, CE (LVD 73/23 \& 93/68/EEC), (EMC 89/336 \& 93/68/EEC). EN61000-3-2, NEC Class 2 power supply acc. To NFPA 70 art. 725-41 (a)(2). ${ }^{3}$				

Notes:

1. Not UL listed for DC input
2. Ripple/noise is stated as typical values when measured with a 20 MHz , bandwidth scope and 50 Ohm resistor.
3. Not to exceed 30 watts total.

Visit our website at www.solahd.com or

SCP-X Extreme Environment Series

The SCP-X is a rugged power supply designed for use in extreme environments. The metal case reduces costs by eliminating separate enclosures. Quick change connectors simplify connectivity for distributed I/O devices on industrial machinery. This model provides 24 Vdc output with limited power to meet Class 2 requirements. Three models are currently offered based on application.

Features

- IP66/67 Versatile/NEMA 4X Rated
- 24 Vdc, 115/230 Vac, 3.8A Nominal Current
- Listed power supply for stand alone applications
- Can be mounted in any orientation without limitation
- Universal input
- High ambient temperature up to $60^{\circ} \mathrm{C}$ without derating
- DC OK Green LED
- Worldwide approvals
- Limited five-year warranty

Related Products

- SDN Series
- SCP Series

Accessory

Catalog Number	Description	Approx. Ship Weight lbs (kg)
SCP-DINBKT	Mounting bracket to secure SCP-X to DIN Rail (included)	1 (.45)

Selection Table

Catalog Number	Output Current	Output Voltage	Output Power
SCP 100S24X-CP	3.8 A	24 Vdc	95 W
SCP 100S24X-DVN			

Control Power (-CP) Applications

The SCP100S24X-CP is designed for Control Power applications where a grounded power supply output is required (Figure 2). The output power is limited to approx 96 total watts.

- Input connector: 3-pole, male receptacle externally threaded with $1 / 2-14$ NPT mounting thread.
- Output connector: 4 -pole, female receptacle internally threaded with $1 / 2$ - 14 NPT mounting thread.

DeviceNet ${ }^{\text {TM }}$ (-DVN) Applications

The SCP100S24X-DVN is designed for DeviceNet ${ }^{\text {TM }}$ application where an isolated output from ground is required (Figure 2).

- Input connector: 3-pole, male receptacle externally threaded with $1 / 2-14$ NPT mounting thread.
- Output connector: 4 -pole, female receptacle internally threaded with $1 / 2-14$ NPT mounting thread.

Recommended Electrical Connections ${ }^{(1)}$

Catalog Number	Input 3-PIN Connections	Output 4-PIN Connections
SCP 100S24X-CP	Daniel Woodhead P/N 103000A01FXX0	
SCP 100S24X-DVN	Turck RSM46*M *length in meters	

1. Connections to be provided by the user.
2. $X X$ is the length of the cordset in foot.

SCP100S24X-CP and SCP100S24X-DVN Mechanical Diagrams

Top View

Side View

Bottom View

Electrical Connections

SOLA P/N SCP 100S24X-DVN POWER SUPPLY

1. Vdc connections are internally bonded to ground
2. V - is isolated from ground. V - is a separately derived source so it is permissible to bond to ground if required in the application.

Figure 2

SCP-X Specifications

Input	
Nominal Voltage	Any voltage from 100 to 240 Vac Input
-AC Range	85-264 Vac Universal Input
-DC Range	100-353 Vdc
Nominal Current ${ }^{1}$	1.6A/0.7A
-Inrush current max.	Typ. <25A
Power Factor Correction ${ }^{2}$	0.95
Frequency	$50 / 60 / 400 \mathrm{~Hz}$
Output	
Power Back Immunity	35 V
Overvoltage Protection	25-25.5 Vdc, autorecovery
Nominal Voltage	24 Vdc
Tolerance	<+/-2\% overall (combination line, load, time and temperature related changes)
- Line Regulation	< 0.5%
- Load Regulation	< 0.5\%
- Time \& Temp. Drift	< 1\%
Ripple ${ }^{3}$	< 50 mVpp
Total Nominal Current	3.8A
Holdup Time	$>25 \mathrm{~ms}$ (Full load, 100 Vac Input @ $\mathrm{T}_{\mathrm{amb}}=+25^{\circ}$) to 95% output voltage
General	
Case	IP66/67 versatile ingress protection; also meets UL50 Type 4X enclosure.
Min. Required Free Space	1 in . (25 mm) all sides but mounted base (permissible to mount in any orientation)
H x W x D (inches/mm)	$4.7 \times 7 \times 1.8(119 \times 178 \times 46)$
Weight - lbs (kg)	$2.6 \mathrm{lbs}(1.16 \mathrm{~kg})$
EMC	
Emissions	EN61000-6-3, EN61204-3, EN55022 Class B, EN61000-3-2, EN61000-3-3
Immunity	EN61000-6-2, EN61204-3, EN55024, IEC61000-4-2, IEC61000-4-3, IEC61000-4-4, IEC61000-4-5, IEC61000-4-6, IEC61000-4-8, IEC61000-4-11
Approvals	UL508, cULus; UL60950, cULus; UL60079-15 cRUus; IEC60950; CE (LVD 73/23 \& 93/68/EEC). (EMC 89/336 \& 93/68/EEC). EN61000-3-2, EN50021 (Class 1, Division 2 Hazardous Location, EEX nA IIC T4 U up to $60^{\circ} \mathrm{C}$ Ambient.) ${ }^{4}$
Temperature	Storage: -40° to $+85^{\circ} \mathrm{C}$, Operation: -40° to $+60^{\circ} \mathrm{C}$ full power with linear derating to half power from 60° to $70^{\circ} \mathrm{C}$ (Convection cooling, no forced air required). Operation up to 100% load permissible with sideways or front side up mounting orientation.
Humidity	Up to 100% RH with condensation.
Altitude	0 to 3,000 meters (0 to 10,000 feet)
Vibration	1.0 gravity (g) peak, $10-500 \mathrm{~Hz}$ (random wave). Passed random vibration test conditions for 3 axes for 60 minutes duration while energized and operating.
Shock	4 g peak, 22 milliseconds half-sine pulse, 3 times on 6 faces while energized and operating
Warranty	5 years
MTBF	$>500,000$ hours according to Telecordia/Bellcore SR-332 Issue 1, ($\left.\mathrm{V}_{\text {in }} 120 \mathrm{Vac}, \mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}\right)$
General Protection/Safety	Protected against continuous short-circuit, continuous overload, continuous open circuit. Protection Class 1 (IEC536), degree of protection IP66/67 versatile (IEC 529). Safe low voltage: SELV (acc. IEC60950)
Status Indicators - Visual	DC OK LED
Installation	
Fusing	
-Input	Internally fused, fuses not replaceable
-Output	Inherently limited current to meet Class 2 requirements per UL1310
Mounting	Chassis mounted via built in mounting tabs. Removal and replacement of the unit shall be possible from front of panel.
Connections	Input: 3 pin IP67 molded plug (quick disconnect). Output: 4 pin IP67 molded receptacle (quick disconnect).

1. Input current ratings are specified with low input, line conditions, worst case 3 . Ripple/noise is stated as typical AC values when measured with a 20 MHZ efficiency values and power factor.
2. Power Factor Correction at $50 / 60 \mathrm{~Hz}$ only.
bandwidth scope and 50 Ohm termination.
3. Additional installation requirements apply when used in hazardous locations (refer to user manual).

SCP Series, 30 Watt; Single, Dual and Triple

These switchers are compact, rugged power supplies designed to power many of your industrial control and instrumentation devices and equipment, with high reliability and tight regulation through the most difficult factory-floor conditions around the globe. "User friendly" applies to these unique power supplies that feature easy-to-install DIN Rail and chassis mounting. Terminations are also easy to access (AC and DC terminations are well separated) and simple to wire. Safety is another aspect where the SCP distinguishes itself. The encapsulated design meets IP20 specifications, and the wide range of voltages will reliably support almost any low-power device in your cabinet or system for years to come.

Features

- International approvals for global use
- DIN Rail or Chassis Mount
- Rugged, encapsulated design to resist environment
- IP20 protection
- Many output voltages, 3.3-48 Volts; single, dual, triple
- Five year warranty

Packaging and Mounting Specifications

- Simple snap-on for DIN Rail TS35/7.5 or TS35/15
- M3 screw clamp terminations
- Chassis mounting possible on -DN Low-Profile versions by removing DIN clips (simply unscrew at the back of the unit)

Selection Table

Low Profile Catalog Number	Description	Output Voltages						Min Load V1 A	Efficiency \%
		V1		V2		V3			
		Vdc	A	Vdc	A	Vdc	A		
SCP 30S3.3-DN	3.3 V	3.3	6.0	-	-	-	-	0	≥ 62
SCP 30S5-DN	5 V	5	6.0	-	-	-	-	0	≥ 70
SCP 30S12-DN	12 V	12	2.5	-	-	-	-	0	≥ 75
SCP 30S15-DN	15 V	15	2.0	-	-	-	-	0	≥ 75
SCP 30S24-DN	24 V	24	1.3	-	-	-	-	0	≥ 77
SCP 30S48-DN	48 V	48	0.6	-	-	-	-	0	≥ 77
SCP 30D12-DN	Dual O/P +/-12 V	12	1.2	-12	1.2	-	-	0.12	≥ 68
SCP 30D15-DN	Dual O/P +/- 15 V	15	1.0	-15	1.0	-	-	0.15	≥ 68
SCP 30D512-DN	Dual O/P 5 V \& 12 V	5	3.0	12	1.2	-	-	0.3	≥ 68
SCP 30D524-DN	Dual O/P 5 V \& 24 V	5	3.0	24	0.6	-	-	0.3	≥ 68
SCP 30T512-DN	Triple O/P 5/12/12 V	5	3.0	-12	0.6	12	0.6	0.3	≥ 68
SCP 30T515-DN	Triple O/P 5/15/15 V	5	3.0	-15	0.5	15	0.5	0.3	≥ 68

Please order using the following model number suffixes:
-DN: Low Profile - DIN Rail or Chassis Mount (ie: SCP30S3.3-DN).

B-DN: Slim Line - DIN Rail Mount Availability Only (ie: SCP30S3.3B-DN).

Note: Slim line version not available on SCP30D512-DN

Options and Accessories

- SCP-MDC - Pair of metal DIN clips
- SCP-PDC - 1 plastic DIN clip with lever for removal from rail

Standards

- UL60950, E137632
- EN60950
- CE and IP20

Specifications

Parameter	Condition	Value
Input		
AC Input Voltage		85... 264 Vac
DC Input Voltage		100... 375 Vdc
Input Frequency		50/60 HZ
Filtering EMI/RFI		EN 55011/B, 55022/B
Switching Frequency		Typ. 100 kHz
Input Fusing Required		Use 2.0 A Slow Fuse
Output		
Output Voltage Accuracy	$V_{\text {in }}=230 \mathrm{~V}, \mathrm{I}_{\text {out }}=\mathrm{max}, 25^{\circ} \mathrm{C}$	$\mathrm{V} 1 \leq \pm 1 \%, \mathrm{~V} 2 / 3 \leq \pm 3 \%$
Ripple	$V_{\text {in }}=\mathrm{min}, \mathrm{I}_{\text {out }}=\mathrm{max}, 25^{\circ} \mathrm{C}$	$\leq 1 \%, V_{\text {out }}$
Noise	$\mathrm{V}_{\text {in }}=\mathrm{min}, \mathrm{I}_{\text {out }}=\mathrm{max}, 25^{\circ} \mathrm{C}$	$\leq 2 \%$, $\mathrm{V}_{\text {out }}$
Line Regulation	$\begin{gathered} \mathrm{V}_{\text {in }}=\min / \max 25^{\circ} \mathrm{C} \\ \mathrm{o}_{\text {out }}=\max , 25^{\circ} \mathrm{C} \end{gathered}$	$\leq+0.5 \%, V_{\text {out }}$
Load Regulation	$\begin{gathered} \mathrm{I}_{\text {out }}=10 \ldots 90 \ldots 10 \%, 25^{\circ} \mathrm{C} \\ V_{\text {in }}=230 \mathrm{Vac}, 25^{\circ} \mathrm{C} \end{gathered}$	$\leq+0.5 \%, V_{\text {out }}$
Overcurrent Protection		$105 . .130 \% \mathrm{I}_{\text {nom }}$
Load Regulation Timing	10...90... $10 \%, 25^{\circ} \mathrm{C}$	$<4 \mathrm{~ms}$
Temperature Coefficient	$\mathrm{T}_{\text {amb }}=-25 \ldots+65^{\circ} \mathrm{C}$	0.01\%/K
Overload/Short Circuit	Contin	nuous
Derating Single/Dual/Triple	$\mathrm{T}_{\text {amb }}>50^{\circ} \mathrm{C}$	2/3/5\%/K max
General		
Holdup Time	$\mathrm{V}_{\text {in }}=230 \mathrm{Vac}$	$>50 \mathrm{~ms}$
Operating Temperature		$-25 \ldots+65^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$45 . .+85^{\circ} \mathrm{C}$
Case Temperature Rise at Full Load		45 K max
MTBF at $25^{\circ} \mathrm{C}$ (input/output)	acc. MIL-HDBK-217F	800,000 hrs
Transient Protection		EN61000-4-2, 3, 4, 5
Cooling		Convection
Weight - lbs (kg)	$0.75 \mathrm{lbs}(.34 \mathrm{~kg})$	$0.84 \mathrm{lbs}(.38 \mathrm{~kg}$)
Case Material/Potting		UL94-VO
CSA Power Supply Class		Level 3
Protection		IP20
Visual Indicators		Green LED indicates DC OK for B-DN Slim Line versions only

Dimensions (H x W x D)

- Low Profile "-DN"
$4.72 \times 2.55 \times 1.29$ inches ($120 \times 65 \times 33 \mathrm{~mm}$)
(Takes up 2.55 inches or 65 mm on DIN Rail)
- Slim Line "B-DN"
$4.72 \times 1.29 \times 2.68$ inches $(120 \times 33 \times 68 \mathrm{~mm})$
(Takes up 1.29 inches or 33 mm on DIN Rail)

Dimensions - mm (inches)
Low Profile DIN Rail (-DN) or Chassis Mount*

* Unscrew DIN connector for chassis mounting.

Slim Line DIN Rail Mount only (B-DN)

Pin-Out

SCP 30	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Single				RETURN	+V 1	\mathbb{N}	\mathbb{N}
Dual sym			-V 2	COM	+V 1	\mathbb{N}	\mathbb{N}
Dual asym		COM $(\mathrm{V} 1)$	+V 1	COM V 3	+V 3	\mathbb{N}	\mathbb{N}
Triple	-V 2	COM $(\mathrm{V} 1)$	$\mathrm{COM}(\mathrm{V} 2 / 3)$	+V 1	+V 3	\mathbb{N}	\mathbb{N}

SCL Series, 4 and 10 Watt CE Linears

The 4 and 10 Watt encapsulated linears are available in dual and triple outputs for applications with sensitive electronics and analog circuitry. The rugged enclosed encapsulated package, with screw terminals and DIN Rail clips, make for easy installation and maintenance. These low-noise modules are capable of being DIN Rail or Chassis mounted.

Features

- Quiet, low noise DC Linear technology
- DIN Rail or Chassis mount for easy installation
- Rugged encapsulated design
- Global specifications including CE and UL 508
- Two year warranty

Packaging and Mounting Specifications

- Simple snap-on for DIN Rail TS35/7.5 or TS35/15
- M3 screw clamp terminations
- Chassis mounting possible on -DN Low-Profile versions by removing DIN clips (simply unscrew at the back of the unit).

Selection Table

Catalog Number	Description	Output Voltages					
		V1		V2		V3	
		Vdc	A	Vdc	A	Vdc	A
4 Watt; Linear DC Power Supply; DIN Rail Mount							
SCL 4D12-DN	Dual O/P $\pm 12 \mathrm{~V}$	12	0.13	-12	0.13	-	-
SCL 4D15-DN	Dual O/P $\pm 15 \mathrm{~V}$	15	0.1	-15	0.1	-	-
10 Watt; Linear DC Power Supply; DIN Rail Mount							
SCL 10D12-DN	Dual $\mathrm{O} / \mathrm{P} \pm 12 \mathrm{~V}$	12	0.35	-12	0.35	-	-
SCL 10D15-DN	Dual $\mathrm{O} / \mathrm{P} \pm 15 \mathrm{~V}$	15	0.3	-15	0.3	-	-
SCL 10T512-DN	Triple O/P, $5 \mathrm{~V} \pm 12 \mathrm{~V}$	5	0.2	12	0.3	-12	0.3
SCL 10T515-DN	Triple O/P, $5 \mathrm{~V} \pm 15 \mathrm{~V}$	5	0.2	15	0.25	-15	0.25

Note: Dual output units can be series connected for 24 V or 30 V applications.

Standards

- UL60950, E137632
- EN60950
- CE and IP20
- UL 508 Listed

Dimensions (H x W x D)

- 4 watt: $4.31 \times 2.0 \times 0.90$ inches $110 \times 51 \times 23 \mathrm{~mm}$
- 10 watt: $4.71 \times 2.55 \times 1.29$ inches $120 \times 65 \times 33 \mathrm{~mm}$

SCL Series

Specifications

Parameter	Condition	Value
Input		
AC Input Voltage		$115 / 230 \pm 10 \% \text { Vac }$ Field Selectable
Input Frequency		$47-63 \mathrm{~Hz}$
Input Current 115/230 V		10 Watt: 0.2 A/0.1 A max 4 Watt: 0.1 A/0.05 A max
Efficiency		Typ. 50\%
Filtering		10 Watt Only: VDE 871/B
Output		
Trimming		Fixed, preset
Ripple	$\mathrm{V}_{\text {in }}=\mathrm{min}, \mathrm{I}_{\text {out }}=\mathrm{max}, 25^{\circ} \mathrm{C}$	$<5 \mathrm{mVpp}$
Noise	$\mathrm{V}_{\text {in }}=\mathrm{min}, \mathrm{I}_{\text {out }}=\mathrm{max}, 25^{\circ} \mathrm{C}$	<5 mVpp
Regulation Accuracy	100...50\%, $25^{\circ} \mathrm{C}$	<0.05\%
Load Regulation Timing	10...90... $10 \%, 25^{\circ} \mathrm{C}$	100 ms
Temperature Coefficient	$\mathrm{T}_{\mathrm{A}}=-25 \ldots+65^{\circ} \mathrm{C}$	0.01\%/K typ.
Holdup Time		min .20 ms
Overload/Short Circuit		Continuous
General		
Conducted Emissions		EN 55 011, Level B
Inducted Noise ESD HF Burst		EN 61000-4-2, Level 4 ENV 50140 ($10 \mathrm{~V} / \mathrm{m}$) EN 61000-4-4, Level 4
Isolation Voltage (input/output)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.0k Vac, EN 60950
Isolation Resistance	$V=230 \mathrm{Vac}, 50 \mathrm{~Hz}$	>100 MOhm
Leakage Current	2 cm side, middle case	$<0.05 \mathrm{~mA}$
Operating Temperature		$\begin{aligned} & 10 \mathrm{~W}:-20 \ldots+70^{\circ} \mathrm{C} \\ & 4 \mathrm{~W}:-25 \ldots+70^{\circ} \mathrm{C} \end{aligned}$
Derating	$\mathrm{T}_{\mathrm{A}}>50^{\circ} \mathrm{C}$	3\%/K
Storage Temperature		$-40 . . .+85^{\circ} \mathrm{C}$
Cooling		Convection
Weight - lbs (kg)		10 Watt: $1.2 \mathrm{lbs}(.55 \mathrm{~kg})$ 4 Watt: $0.44 \mathrm{lbs}(.20 \mathrm{~kg})$
Case Material/Potting		UL94-VO
SELV	Protection Class	Class 2

Dimensions - mm (inches)

SCL 4 Watt Linear

Pin-Out

SCL 4	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Dual	$12 / 15 \mathrm{~V}$	$\mathrm{COM} 12 / 15 \mathrm{~V}$	$-12 /-15 \mathrm{~V}$	\mathbb{N}	IN	N

SCL 10 Watt Linear

Pin-Out

SCL 10	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Dual	$-12 / 15 \mathrm{~V}$		GND $12 / 15 \mathrm{~V}$		$12 / 15 \mathrm{~V}$	\mathbb{N}	\mathbb{N}	\mathbb{N}
Triple	$-12 / 15 \mathrm{~V}$	5 V	GND $12 / 15 \mathrm{~V}$	COM 5 V	$12 / 15 \mathrm{~V}$	$\mathbb{I N}$	$\mathbb{I N}$	\mathbb{N}

SCD Series, Encapsulated, Industrial DC to DC Converter

These compact, rugged DC to DC converters are power supplies designed to power industrial control instrumentation devices and equipment where $A C$ power is not convenient or accessible. With high reliability and wide input range, these units can operate through the most difficult factoryfloor conditions around the globe. "User friendly" applies to these unique power supplies that feature easy-to-install DIN Rail and chassis mounting. Terminations are also easy to access and simple to wire. Encapsulated design meets IP20 specifications for use in harsh environments.

Features

- DIN Rail or Chassis mount by removing DIN clips
- Rugged, encapsulated design to resist environment
- IP20 protection
- Wide 20 to 72 Vdc input range
- M3 screw clamp terminations
- Simple snap-on for DIN Rail TS35/7.5 or TS35/15
- Galvanic isolation
- 5 year warranty

Options and Accessories

- SCP-MDC - Pair of metal DIN clips
- SCP-PDC - 1 plastic DIN clip with lever for removal from rail

Standards

- UL60950, E137632
- EN60950
- CE and IP20
- UL 508 Listed

Applications

These units regulate voltage for sensitive electronic equipment run from battery power. For example, a 24 Vdc battery system where the battery voltage can be 30 volts, sometimes higher during charging, and dip below 22 volts under heavy load. The SCD can be used to stabilize the voltage for those devices not designed to handle wider voltage swings.

They are also a convenient and inexpensive alternative to running AC power through a large industrial machine. The SCD can use 24 Vdc commonly available on many parts of the machine to create other voltages needed to run sensors, transducers and other devices that the machine requires to work properly.

- Industrial
- Encoders, special sensors, communications and instrumentation
- Telecommunications systems
- Remote Site/Harsh Environment

SCD Series, Encapsulated, Industrial DC to DC Converter

Selection Table

Low Profile Catalog Number	Description	Output Voltages				Min Load V1 A
		V1		V2		
		Vdc	A	Vdc	A	
30 Watts; Switching DC Power Supply						
SCD 30S5-DN	5 V	5	5	-	-	0
SCD 30S12-DN	12 V	12	2.5	-	-	0
SCD 30S15-DN	15 V	15	2	-	-	0
SCD 30S24-DN	24 V	24	1.3	-	-	0
SCD 30S48-DN	48 V	48	0.6	-	-	0
SCD 30D15-DN	Dual O/P+15 V	15	0.8	-15	0.8	0.15

Dimensions

Specifications

Parameter	Condition	Value
Input		
Input Voltage		20... 72 Vdc
Filtering EMI/RFI		EN 55011/B, 55022/B
Switching Frequency		Typ. 100 kHz
Output		
Output Voltage Accuracy	$\begin{aligned} & \mathrm{V}_{\text {in }}=48 \mathrm{~V}, \\ & \mathrm{I}_{\text {out }}=\max , 25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V} 1 \leq \pm 1 \%, \mathrm{~V} 2 \leq \pm 4 \%$
Ripple	$\begin{aligned} & \mathrm{V}_{\text {in }}=\min , \\ & \mathrm{I}_{\text {out }}=\max , 25^{\circ} \mathrm{C} \end{aligned}$	$\leq 1 \%, \mathrm{~V}_{\text {out }}$
Noise	$\begin{aligned} & V_{\text {in }}=\min , \\ & I_{\text {out }}=\max , 25^{\circ} \mathrm{C} \end{aligned}$	$\leq 2 \%$, $\mathrm{V}_{\text {out }}$
Line Regulation	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{min} / \max 25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {out }}=\max , 25^{\circ} \mathrm{C} \end{aligned}$	$\leq+0.5 \%, V_{\text {out }}$
Load Regulation	$\begin{aligned} & \mathrm{I}_{\text {out }}=10 \ldots 90 \ldots 10 \%, \\ & 25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {in }}=48 \mathrm{~V}, 25^{\circ} \mathrm{C} \end{aligned}$	$\leq+0.5 \%, V_{\text {out }}$
Overcurrent Protection		$105 . .130 \% \mathrm{I}_{\text {nom }}$
Load Regulation Timing	10...90...10\%, $25^{\circ} \mathrm{C}$	$<4 \mathrm{~ms}$
Temperature Coefficient	$\mathrm{T}_{\mathrm{A}}=-25 \ldots+65^{\circ} \mathrm{C}$	0.01\%/K
Overload/Short Circuit		nuous
Derating Single/Dual/ Triple	$\mathrm{T}_{\mathrm{A}}>50^{\circ} \mathrm{C}$	5\%/K max
General		
Holdup Time	$\mathrm{V}_{\text {in }}=48 \mathrm{~V}$	$>10 \mathrm{~ms}$
Operating Temperature		$-25 \ldots+65^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$45 . .+85^{\circ} \mathrm{C}$
Case Temperature Rise at Full Load		45 K max
MTBF at $25^{\circ} \mathrm{C}$ (input/output)	acc. MIL-STD-217F	800,000 hrs
Transient Protection		EN61000-4-2, 3, 4, 5
Cooling		Convection
Weight - lbs (kg)		$0.86 \mathrm{lbs}(.39 \mathrm{~kg}$)
Case Material/Potting		UL94-VO
CSA Power Supply Class		Level 3
Protection		IP20

Note: No input protection against reverse voltage.

Pin-Out

SCD 30	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{7}$
Single	+V 1	-V 1		+IN	-IN
Dual	V 1	COM	V 2	+IN	-IN

SDU Series, Direct Current Uninterruptible Power Supply (DC UPS) System

The SDU DIN Rail DC UPS is an advanced 24 Vdc uninterruptible power system that combines an industry leading design with a wide operational temperature range and unique installation options. The SDU DC UPS is a powerful, microprocessor controlled UPS that provides protection from power interruptions. With an input voltage range of 22.5 to 30.0 Vdc , the DC UPS is the ideal power back-up solution for your critical connected loads.

These units were designed specifically for use with Sola's popular SDN Series of power supplies. Sola's external battery module is the only one on the market that allows you to seal the electronics in the panel and maintain safety by placing the battery outside of a non-ventilated enclosure.

These units include easy to wire screw terminations for critical devices needing battery back-up. The SDU DC UPS includes an automatic self-test feature that checks the UPS and battery functions. Battery charging occurs automatically when input DC power is applied. When power fails, the DC UPS will switch to battery back-up. If the battery is no longer useful, the UPS will sound an alarm and an LED indicator will illuminate

Back-up power protection in modern industrial applications depends mainly on AC UPS. AC is converted to DC, and converted back to AC in the AC UPS, then converted back to $D C$ in the protected equipment power supply. By applying the new Sola SDU DIN Rail DC UPS, you avoid the inefficiencies of all these conversions. This design maximizes system up-time flexibility, and optimizes reliability assurance.

Applications

- Industrial/Machine Control
- Automation process Control
- Computer-based Control Systems
- Conveying Equipment
- Material Handling
- Packaging Machines
- Semiconductor Fabrication Equipment
- DeviceNet ${ }^{\text {TM }}$
- Amusement Park Equipment
- Pharmaceutical Applications
- Control Rooms

Features

- Modular, rugged industrial grade design
- Microprocessor based controls
- Automatic self-test feature for UPS function and battery management check
- Power module wide operation temperature range (-20° to $+50^{\circ} \mathrm{C}$)
- Flexible batteries back-up expansion capabilities
- Overload protection in normal and battery modes
- User replaceable batteries
- IP20 rated input and output screw terminals
- No internal fan, no extra cooling required
- Sturdy, reliable all metal DIN Rail mounting connector
- LED Status Indicators
- Universal Dry Contact Relay terminals provide remote signaling
- Monitoring, diagnostics, and remote turn-on and shut-off capabilities
- Two year warranty

Related Products

- SDN-P Series DIN Rail Power Supplies
- SDN-C Series DIN Rail Power Supplies
- STV 25K Series Surge Suppressors

Selection Table

Catalog Number		Description
SDU 10-24	$240 \mathrm{VA}, 24 \mathrm{~V} / 10 \mathrm{~A}$ DIN Rail DC UPS power module, battery module is required	
SDU 20-24	$480 \mathrm{VA}, 24 \mathrm{~V} / 20 \mathrm{~A}$ DIN Rail DC UPS power module, battery module is required	$1.65(0.65)$
SDU 24-BAT	24 V DIN Rail/Panel Mount Battery Module (cable included)	$1.65(0.65)$
SDU 24-BATEM	24 V External Mount Battery Module (cable included)	$12.0(5.33)$
SDU 24EXTBC6	Optional 6 ft. Battery Module cable to 24V DC UPS	$16.0(7.11)$
SDU 24-DB9	Optional interface kit to convert relay contacts signals to DB9 signals	
SDU-PMBRK	Optional chassis mount brackets to secure UPS to wall, panel, or enclosure	$0.5(0.22)$

There are three individual hardware products when putting an SDU DC UPS system into operation:

1. 24 Vdc Power Supply (Recommended Sola SDN Series)
2. 24 Vdc SDU DC UPS Power Module
3. 24 Vdc SDU DC UPS Battery Module; or 24 Vdc SDU DC UPS External Battery Module

There are two models of the SDU DC UPS Power Module:

1. SDU 10-24, $24 \mathrm{Vdc} / 10 \mathrm{amp}$ (battery modules are required)
2. SDU 20-24, $24 \mathrm{Vdc} / 20 a \mathrm{mp}$ (battery modules are required)

DIN Rail Mounted Battery Option

Notes:

1) AC/DC Power Supply
2) Power Module: SDU 10-24 or SDU 20-24
3) Battery Module: SDU 24-BAT
4) Optional battery module for extended runtime.

There are two models* of the SDU DC UPS Battery Modules:

1. SDU 24-BAT, DIN Rail/Panel mount for installation in ventilated enclosure, up to 4 battery modules can be connected to the SDU DC UPS.
2. SDU 24-BATEM, Panel mount, alternate battery module for external installation of non-ventilated enclosures, only 1 battery module can be connected to the SDU DC UPS.
*Can not use a combination of both models of the battery modules, only one model of the battery module can be connected to the SDU DC UPS.

External Battery Option

Notes:

1) $A C / D C$ Power Supply
2) Power Module: SDU 10-24 or SDU 20-24
3) Battery Module: SDU 24-BATEM

SDU DC UPS Power Modules Specifications

Notes:

1. See Battery Back-Up Times on next page.
2. DC UPS System includes one power module (SDU 10-24 or SDU 20-24) and one or more battery modules (SDU 24-BAT or SDU 24BATEM)

Visit our website at www.solahd.com or

SDN DC UPS Battery Module Specifications

Parameter	SDU 24-BAT	SDU 24-BATEM	
Nominal Voltage	24 Vdc		
Protection	Fuse: 30A	Circuit Breaker: 24V, 25A	
Charging Current	0.5 A	0.8 A	
Enclosure Dimension in. (mm)	$4.88 \times 8.27 \times 4.55$ $(124 \times 210 \times 116)$	$11.5 \times 5.57 \times 4.57$ $(292 \times 142 \times 116)$	
Enclosure Type	IP20		NEMA 1
Terminal Connector Type	Polarized Powerpole Connectors		

SDU DC UPS Back-Up Times (Typical)

SDU 10-24 with SDU 24-BAT					
Load	20\% (2A)	40\% (4A)	60\% (6A)	80\% (8A)	100\% (10A)
1 unit	113	45	30	21	14
2 units	247	114	74	48	38
3 units	396	178	117	80	58
4 units	531	233	148	111	81
SDU 10-24 with SDU 24-BATEM					
1 EBP	200	82	44	30	21
SDU 20-24 with SDU 24-BAT					
Load	20\% (4A)	40\% (8A)	60\% (12A)	80\% (16A)	100\% (20A)
1 unit	46	21	10	06	04
2 units	116	50	28	17	10
3 units	178	80	46	31	20
4 units	237	113	65	43	31
SDU 20-24 with SDU 24-BATEM					
1 EBP	84	30	16	11	7

SFL Series, 75-600 Watt

The SFL series is a DIN Rail switching power supply series that complements the Sola SDN ${ }^{\text {TM }}$ products with more input voltage, output voltage and power levels to give an even broader range of industrial DC power solutions.

These products are available in 12, 24 and 48 Vdc output and 115/230 Vac Input. They feature pluggable screw connectors* (mating connectors are included in each box sold) for easy installation and service. The products feature a DIN Rail connection, front panel DC OK indicators, and easily accessible AC and DC connections.

For parallel operation with power sharing, a redundant version is available for the $300 \mathrm{~W}(24 \mathrm{~V} / 12 \mathrm{~A})$ and 600 W ($24 \mathrm{~V} / 24 \mathrm{~A}$) models.

Features

- DIN Rail Mount regulated switch mode power supplies
- $12 \mathrm{~V}, 24 \mathrm{~V}$, and 48 V outputs available from 1.5-24 A
- Easy-to-wire pluggable* and screw terminal connectors
- Adjustable output voltage
- Selectable input: 115/230 Vac
- UL1604 Listed for Class 1, Division 2 hazardous locations (except -RED and -UDS versions)
- UL 508 Listed (except -RED and -UDS versions). No derating necessary.
- Two year warranty
* Except 600 watt models.

C

EMC and Low Volt. Directive

- Fully Integrated Redundant models available:
- RED (For SFL24-24-100 and SFL12-24-100 only) Designed for $\mathrm{N}+1$ redundant power supply systems, these units provide active current sharing and allow up to 5 power supplies to be paralleled. Decoupling diodes and an alarm output to signal a unit failure are included in this option. Multiple units are required for redundancy.
- Models with optional battery back-up available:
- UDS (For SFL24-24-100 and SFL12-24-100 only) Contact Technical Services for details.

Selection Table

Catalog Number	Input Voltage Selectable	Output Power Maximum	Output Voltage Nominal	Output Current Maximum
SFL 6-12-100 SFL 1.5-48-100		75 Watt	12 Vdc 48 Vdc	$\begin{gathered} 6 \mathrm{~A} \\ 1.5 \mathrm{~A} \end{gathered}$
SFL 3-48-100		150 Watt	48 Vdc	3 A
$\begin{aligned} & \text { SFL 12-24-100 } \\ & \text { SFL 6-48-100 } \end{aligned}$	115/230 Vac	300 Watt	24 Vdc 48 Vdc	$\begin{gathered} 12 \mathrm{~A} \\ 6 \mathrm{~A} \end{gathered}$
SFL 24-24-100 SFL 12-48-100		600 Watt	24 Vdc 48 Vdc	$\begin{aligned} & 24 \mathrm{~A} \\ & 12 \mathrm{~A} \end{aligned}$
Redundant Models				
SFL 12-24-100RED SFL 24-24-100RED	115/230 Vac	300 Watt 600 Watt	24 Vdc	$\begin{aligned} & 12 \mathrm{~A} \\ & 24 \mathrm{~A} \end{aligned}$

SFL Specifications

Parameter	Value	
Input		
Input voltages nominal (user selectable)	93-132 Vac / 187-264 Vac	
Input Frequency	$47-63 \mathrm{~Hz}$	
Input current at full load (typical) - 75 W ($12 \mathrm{~V} / 6 \mathrm{~A}, 24 \mathrm{~V} / 3 \mathrm{~A}, 48 \mathrm{~V} / 1.5 \mathrm{~A}$) - 150 W ($24 \mathrm{~V} / 6 \mathrm{~A}, 48 \mathrm{~V} / 3 \mathrm{~A}$) - 300 W (24 V/12 A, 48 V/6 A) - 600 W ($24 \mathrm{~V} / 24 \mathrm{~A}, 48 \mathrm{~V} / 12 \mathrm{~A}$)	$\begin{gathered} \hline 115 \mathrm{Vac} \\ 1.7 \mathrm{~A} \\ 3.0 \mathrm{~A} \\ 5.4 \mathrm{~A} \\ 10.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} 230 \mathrm{Vac} \\ 0.9 \mathrm{~A} \\ 1.7 \mathrm{~A} \\ 3.3 \mathrm{~A} \\ 6.4 \mathrm{~A} \end{gathered}$
$\begin{aligned} & \text { Inrush current (max.) } \\ & \begin{array}{l} -75 \mathrm{~W} \\ -150 \mathrm{~W} \\ -300 \mathrm{~W} \\ -600 \mathrm{~W} \end{array} \end{aligned}$	$\begin{gathered} \hline 115 \mathrm{Vac} \\ 16.5 \mathrm{~A} \\ 35.0 \mathrm{~A} \\ 35.0 \mathrm{~A} \\ 70.0 \mathrm{~A} \end{gathered}$	$\begin{gathered} 230 \mathrm{Vac} \\ 33.0 \mathrm{~A} \\ 70.0 \mathrm{~A} \\ 70.0 \mathrm{~A} \\ 80.0 \mathrm{~A} \end{gathered}$
Internal fuse (slow blow) not accessible $\begin{aligned} & -75 \mathrm{~W} / 150 \mathrm{~W} \\ & -300 \mathrm{~W} \\ & -600 \mathrm{~W} \end{aligned}$	$\begin{gathered} 4.0 \mathrm{~A} \\ 6.3 \mathrm{~A} \\ 12.0 \mathrm{~A} \end{gathered}$	
Output		
Voltage Adjustment Range - 12 V models - 24 V models - 48 V models	$\begin{aligned} & 12-14 \mathrm{Vdc} \\ & 24-28 \mathrm{Vdc} \\ & 48-52 \mathrm{Vdc} \end{aligned}$	
Output Regulation - Line voltage variation - Load variation 10-90\% 75W, 150W models 300W, 600W models	$\begin{aligned} & \pm 1.0 \% \max . \\ & \pm 0.5 \% \max . \end{aligned}$	
Ripple and noise (20 MHz bandwidth)	< 50 mVpp	
Electronic short circuit protection / current limitation	110 \% typ. (constant current)	
Parallel Operation - SFL12-24-100RED - SFL24-24-100RED	Up to 5 units	
Overvoltage Protection, trigger point at	140\% typical out nominal	
Holdup Time	min. 20 mS	

Parameter	Value
General	
Operating Temperature Range Derating above $50^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} 2 \% /{ }^{\circ} \mathrm{C}$
Storage Temperature	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Humidity (non condensing)	95\% rel H max.
Switching Frequency $\begin{aligned} & -75 \mathrm{~W} \\ & -150 \mathrm{~W} / 300 \mathrm{~W} / 600 \mathrm{~W} \\ & \hline \end{aligned}$	100 kHz typical 67 kHz typical
Efficiency	>85\%
Operation Indication	LED, DC OK
Isolation Voltage - Input/output - Input/case - Output/case	$3,000 \mathrm{Vac}$ (1 minute) 2,000 Vac (1 minute) 500 Vac (1 minute)
Safety Class (IEC536)	Class 1
Safety Standards Met	IEC950,EN60950,CE marked for LVD, UL60950 recognized and UL 508.
Conducted EMI according to:	EN55022 Class B, EN55011 Class B, FCC-B
Electromagnetic Susceptibility - Electrostatic discharge ESD. - RF field susceptibility. - Electrical fast transients/ bursts on main line. - Immunity to conducted radio frequency disturbances above 9 kHz. - Mains frequency field	EN61000-4-2 $4 \mathrm{kV} / 8 \mathrm{kV}$ EN61000-4-3 $10 \mathrm{~V} / \mathrm{m}$ EN61000-4-4 2 kV EN61000-4-6 10 V EN61000-4-8 $30 \mathrm{~A} / \mathrm{m}$
Case protection according to IEC529	IP 20
Case material	Steel
Mounting	Snap-on 35 mm DIN Rail as per EN50022 or Chassis mounting option available

Mounting Brackets

For easy conversion to panel or chassis mounting.

Catalog Number	Output Power Maximum
SFL 75-PMBRK	75 Watt
SFL 150-PMBRK	150 Watt
SFL 300-PMBRK	300 Watt
SFL 600-PMBRK	600 Watt

SFL Series Dimensions (inches/mm)

SFL 75 Watt (12 V/6 A, 48 V/1.5 A)

Weight: $1.06 \mathrm{lbs} / .48 \mathrm{~kg}$ approx.

SFL 150 Watt (SFL 3-48-100)

Weight: $1.6 \mathrm{lbs} / .73 \mathrm{~kg}$ approx.

SFL 300 Watt (SFL 12-24-100[RED], SFL 6-48-100)

Weight: $3.09 \mathrm{lbs} / 1.4 \mathrm{~kg}$ approx.

SFL 600 Watt (SFL 12-48-100, SFL 24-24-100[RED])

Weight: $4 \mathrm{lbs} / 1.81 \mathrm{~kg}$ approx.

Silver Line Series - Single \& Multi-Output Linears

The Silver Line series follows the industry accepted footprint for open frame, linear power supplies. Standard screw terminal connections and optional covers are offered for safety considerations.

Features

- Easy-to-install screw terminal connections
- Cover options
- Industry standard footprint
- Universal input and approvals (115/230 Vac)
- Low noise, extremely quiet DC output. For noise sensitive or analog circuitry.
- Fast transient response. Ideal for test applications.
- Built-in OVP on 5 V models and optional on 12, 15 and 24 V models
- Automatic resetting overload protection
- Short circuit protected
- Two year warranty

Applications

- Industrial Control Circuits and Components
- Instrumentation
- Drives
- CNC Machinery
- Equipment for food industry
- Microprocessor Circuits
- Analog Circuits
- Noise sensitive Circuitry and Sensors

SL Series Selection Table

Catalog Number	Output 1	Output 2	Output 3	Case
SLS-05-030-1T	5 V @ 3 A*\#	-	-	A
SLS-05-060-1T	5 V @ 6 A*\#	-	-	B1
SLS-05-090-1T	5 V @ 9 A*\#	-	-	C
SLS-05-120-1T	5 V @ 12 A*\#	-	-	12
SLS-12-017T1	$\begin{gathered} 12 \mathrm{~V} @ 1.7 \mathrm{~A} \# \text { or } \\ 15 \mathrm{~V} @ 1.5 \mathrm{~A} \end{gathered}$	-	-	A
SLS-12-034T	12 V @ 3.4 A\#	-	-	B1
SLS-12-051T	12 V @ 5.1 A\#	-	-	C
SLS-12-068T	12 V @ 6.8 A\#	-	-	12
SLS-15-045T	15 V @ 4.5 A\#	-	-	C
SLS-15-060T	15 V @ 6 A\#	-	-	12
SLS-24-012T	24 V @ 1.2 A\#	-	-	A
SLS-24-024T	24 V @ 2.4 A\#	-	-	B2
SLS-24-036T	24 V @ 3.6 A\#	-	-	C
SLS-24-048T	24 V @ 4.8 A\#	-	-	12
SLS-24-072T	24 V @ 7.2 A\#	-	-	K
SLS-24-120T	24 V @ 12.0 A\#	-	-	L
SLD-12-1010-12T ${ }^{1}$	12 V @ 1 A or 15 V @ . 8 A	$\begin{gathered} -12 \mathrm{~V} @ 1 \text { A or } \\ -15 \mathrm{~V} @ .8 \end{gathered}$	-	H1
SLD-12-1818-12T ${ }^{1}$	$\begin{gathered} 12 \mathrm{~V} @ 1.8 \mathrm{~A} \text { or } \\ 15 \mathrm{~V} @ 1.5 \mathrm{~A} \end{gathered}$	$\begin{gathered} -12 \mathrm{~V} @ 1.8 \mathrm{~A} \text { or } \\ -15 \mathrm{~V} @ 1.5 \mathrm{~A} \end{gathered}$	-	D
SLD-12-3434-12T	12 V @ 3.4 A\#	-12 V @ 3.4 A\#	-	13
SLD-15-3030-15T	15 V @ 3 A\#	-15 V @ 3 A\#	-	13
SLD-12-6034-05T	5 V @ 6 A*\#	12 V @ 3.4 A\#	-	11
SLD-12-3015-05T	5 V @ 3 A*\#	12 V @ 1.5 A	-	C1
SLT 12-20404-12T ${ }^{1}$	5 V @ 2 A*\#	$\begin{gathered} 12 \mathrm{~V} @ .4 \mathrm{~A} \text { or } \\ 15 \mathrm{~V} @ .4 \mathrm{~A} \end{gathered}$	$\begin{gathered} -12 \mathrm{~V} @ .4 \mathrm{~A} \text { or } \\ -15 \mathrm{~V} @ .4 \mathrm{~A} \end{gathered}$	H2
SLT 12-31010-12T1	5 V @ 3 A*\#	12 V @ 1 A\# or 15 V @ . 8 A	$\begin{gathered} -12 \text { V @ } 1 \text { A\# or } \\ -15 \text { V @ . } 8 \text { A } \end{gathered}$	F
SLT 12-61818-12T1	5 V @ 6A*\#	12 V @1.8 A or 15 V @1.5 A	$\begin{gathered} -12 \mathrm{~V} @ 1.8 \\ \mathrm{~A} \text { or }-15 \mathrm{~V} @ \\ 1.5 \mathrm{~A} \end{gathered}$	G2

Over Voltage Protector (OVP)				
SL0-12-000-1	6.2 V to 34 V Adjustable @ 8 A	For Cases B through K	J1	
SL0-12-000-TB	6.2 V to 34 V Adjustable @ 8 A	For Case A or Cases B through K (when used with a cover)	J2	

Notes:

* With Built-In OVP
\# With Remote Sense (R.S.)

1. $12 / 15$ Volt models are factory set for 12 Volt operation. 15 Volt operation is field adjustable.

Dimensions - inches (mm)

Case B

Cover Options

| Catalog
 Number | Description | Catalog
 Number | Description |
| :---: | :--- | :--- | :--- |$|$| SLCASA-CVR |
| :--- | Cover for Case A \quad SLCASI-CVR | Cover for Cases |
| :--- |
| I1, I2, \& I3 |

Note:
Covers are sold separately. When used, derate the power supply by 15% of its rated value.

Silver Line Dimensions (inches/mm)

AC INPUTIDC OUTPUT OVP (OPTIONAL)

Case G2

Cases H1 and H2

Silver Line Dimensions (inches/mm)

The new GL series provides a broad range of $\mathrm{AC} / \mathrm{DC}$ power supply solutions that covers power ratings from 25 watts to 500 watts for use in various industrial and medical applications requiring standard footprint size and very high reliability.

These low-profile AC/DC switchers offer universal input voltage with no switches or jumpers, ideal for higher volume worldwide applications.

All models feature:

- Industry standard footprints
- Universal input
- Full power to $50^{\circ} \mathrm{C}$
- High demonstrated MTBF
- Automatic overvoltage protection
- Overload protection
- Built-in EMI Filtering
- Extensive safety approvals
- Derated operation to $70^{\circ} \mathrm{C}$
- 250 VA and higher VA size enclosed
- Two year limited warranty

Many models feature:

- EN61000-3-2 Compliance
- Supervisory outputs (5 V/12 V)
- Wide-adjustable floating $4^{\text {th }}$ output
- Single wire current share
- Medical approvals
- Remote Sense
- Adjustable main output
- Power Fail and DC Good signals
- Wide-adjustable on single output models

Cover and Bracket Options

- Cover options can be ordered separately. They are designed to simplify mechanical integration of the power supplies into systems and add an extra measure of electrical safety for service personnel.
- Bracket kits can be ordered separately for GL110 series only. It is needed when the cover option is used.

Catalog Number	Description
GLX40	Enclosure kit for the GL20 and GL40
GLX50	Enclosure kit for the GL50 and GL100-M
GLX60	Enclosure kit for the GL60
GLX110-B	Bracket kit for the GL110
GLX110-C	Cover kit for the GL110
GLX120	Enclosure kit for the GLS120 and GLQ120
GLX140-C	Cover kit for the GLQ140
GLX140-CF	Cover with top fan kit for the GLQ140
GLX150-C	Cover kit for the GL150
GLX170-C	Cover kit for the quad output GL170
GLX17S-C	Cover kit for the single output GL170
GLX200	Enclosure kit for the GL200-M
GLX250-CEF	Cover end fan kit for the GL250
GLX250-CF	Cover with top fan kit for the GL250/350
	(Table 1)

Mating Connectors

- Can be ordered separately for units with Molex connection
- Kits include mating housing and pins for input and output connection

Catalog Number	Description
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 0 6 }}$	GLX40, GLX50 and GLX60 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 0 7 }}$	GLS110 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 0 8 }}$	GLQ110 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 2 0 }}$	GLS120 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 1 2 }}$	GLQ123 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 1 7 }}$	GLQ142 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 0 9 }}$	GLS150 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 1 0 }}$	GLQ150 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 1 5 }}$	GLQ170 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 1 6 }}$	GLS170 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 0 5 }}$	GLX250 Mating Connector Kit
$\mathbf{7 0 - 8 4 1 - \mathbf { 0 2 4 }}$	GLS500 Mating Connector Kit

Specifications

	GL20, GL40	GL50	GL60, GL110	GLQ120, GLS120	GL140	GL150	GL170	$\begin{aligned} & \text { GL250, } \\ & \text { GL350 } \end{aligned}$	GL500
Input									
Input Voltage ${ }^{(1)}$	$\begin{aligned} & 85-264 \mathrm{Vac} ; \\ & 120-300 \mathrm{Vdc} \end{aligned}$	$\begin{gathered} 90-264 \mathrm{Vac} \\ 127-300 \mathrm{Vdc} \end{gathered}$		$\begin{gathered} 85-264 \mathrm{Vac} \\ 120-300 \mathrm{Vdc} \end{gathered}$		85-132 Vac or 170-264 Vac auto-selected. 220-300 Vdc	85-264 Vac	20-300 Vdc	85-264 Vac
Frequency	$47-63 \mathrm{~Hz}, 400 \pm 40 \mathrm{~Hz}$					$47-63 \mathrm{~Hz}$			
Inrush Current	GL20: <15A peak @ 115 Vac ; <30A peak @ 230 Vac, cold start @ $25^{\circ} \mathrm{C}$. GL40: <18A peak @ $115 \mathrm{Vac} ;$ <36A peak @ 230 Vac, cold start @ $25^{\circ} \mathrm{C}$	<60A peak @ 230 Vac, cold start @ $25^{\circ} \mathrm{C}$	<18A peak @ 115 Vac, <36 A peak @ 230 Vac, cold start @ $25^{\circ} \mathrm{C}$	GLQ120: 38 A max., cold start @ $25^{\circ} \mathrm{C}$ GLS120: 40A max., cold start @ $25^{\circ} \mathrm{C}$	38 A max, cold start @ $25^{\circ} \mathrm{C}$			GL250: 20 A max., cold start @ $25^{\circ} \mathrm{C}$. GL350: 38 A max., cold start (a) $25^{\circ} \mathrm{C}$.	50 A max., cold start @ $25^{\circ} \mathrm{C}$
Efficiency	70\% typical at full load	80\% - 85\% typical at full load	70\% typical at full load	GLQ120: 65\% typical at full load. GLS120: 80\% typical at full load	75\% typical at full load				85\% typical at full load, nominal line
EMI/RFI	FCC Class B ; CISPR 22 Class B ; EN55022 Class B								
Safety Ground Leakage Current	Non-Medical: $<0.5 \mathrm{~mA}$ Medical: $<75 \mu \mathrm{~A}$ @ $50 / 60 \mathrm{~Hz}$, 264 Vac input	Non-medical: $<0.5 \mathrm{~mA}$ Medical: $275 \mu \mathrm{~A}$ @ 50/60 Hz; 264 Vac input for Class I; <0.25mA @ 50/60 Hz; 264 Vac input for Class II (for single output only)	Non-Medical: $<0.5 \mathrm{~mA}$ Medical: $<75 \mu \mathrm{~A}$ @ $50 / 60 \mathrm{~Hz}$; 264 Vac input	GLQ120: $<1 \mathrm{~mA}$ @ $50 / 60 \mathrm{~Hz}$, 264 Vac input. GLS120: 0.5 mA @ $50 / 60 \mathrm{~Hz}$, 264 Vac input	1.0 mA @ $50 / 60 \mathrm{~Hz}$, 264 Vac input	$<0.5 \mathrm{~mA}$ @ $50 / 60 \mathrm{~Hz}$, 264 Vac input	Non-Medical: 0.1 mA Medical: $<250 \mu \mathrm{~A}$ 1.0 mA @ $50 / 60 \mathrm{~Hz}$, 264 Vac input	$<0.5 \mathrm{~mA}$ @ $50 / 60 \mathrm{~Hz}$, 264 Vac input	Non-Medical: $<0.5 \mathrm{~mA}$ Medical: $<0.3 \mathrm{~mA}$ @ $50 / 60 \mathrm{~Hz}$, 264 Vac input
Output									
Power	Refer to the selection table								
Adjustment Range on Main Output	$-5,+10 \%$ minimum	$\pm 20 \%$ minimum for single output only models	GL60: -5, $+10 \%$ minimum GL110: $\pm 5 \%$ on main, $5-25 \mathrm{~V}$ on $4^{\text {th }}$ output	$\pm 5 \%$ minimum	3.3-5.5V on main; -12 15 V on 3rd output 3.3 25 V on 4th output	$\pm 5 \%$ minimum on main, $5-25 \mathrm{~V}$ on $4^{\text {th }}$ output	2:1 wide ratio minimum	2:1 wide ratio	$\pm 5 \%$
Hold-up Time	20 ms @ full load, 115 Vac nominal line	10/20 ms 115/230 Vac Input line	20 ms @ full load, 115 Vac nominal line						
Overload	Short circuit protection on all outputs. Primary overload protection								
Overvoltage Protection	5 V output; 5.7 to 6.7 Vdc . Other outputs 10% to 25\% above nominal output	30-50\% above nominal output	5 V output; 5.7 - 6.7 Vdc. Other outputs 10\% to 25% above nominal output	3.3 V and 5 V output: 20\% to 35\% above nominal output	Tracks outputs 1, 3 \& 4; 10 to 35%	5 V output: 5.7 to 6.7 Vdc . Other outputs 10\% to 25\% above nominal output	10% to 40% above nominal output	5 V output: 5.7 to 6.7 Vdc . Other outputs 10\% to 25\% above nominal output	20-35\% above nominal output
Remote Sense	Compensates for 0.5 V lead drop minimum; Will operate without remote sense connected, Reverse connection protected								
General									
Temperature ${ }^{(2)}$	Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Operating: 0° to $50^{\circ} \mathrm{C}$ ambient. Derate each output 2.5% per degree from 50° to $70^{\circ} \mathrm{C},-20^{\circ} \mathrm{C}$ start up.								
Electromagnetic Susceptibility	Designed to meet IEC 801, $-2,-3,-4,-5,-6$, Level 3 or EN61000-4; $-2,-3,-4,-5,-6,-8,-11$ Level 3								
Humidity	Operating; non-condensing up to 95\% RH								
Vibration	Three orthogonal axes, sweep at 1 oct/min, 5 min . dwell at four major resonances 0.75 G peak 5 Hz to 500 Hz (2 G peak 8 Hz to 500 Hz for GL500)								
MTBF	$>550,000$ hours demonstrated at full load and $25^{\circ} \mathrm{C}$ ambient conditions								
Safety	Non-Medical: EN60950, UL UL60950 E132002, CSA CSA 22.2-234 Level 3 LR53982C, CB Certificate and report; CE Mark (LVD) Medical: UL 2601; CSA 22.2 No. 601.1; EN 60601-1								

Notes:
(1) Proper circuit protection required when operating with a DC input voltage. (2) Regulation and ripple may deviate from the spec at $-20^{\circ} \mathrm{C}$ start up.

Visit our website at www.solahd.com or
142 contact Technical Services at (800) 377-4384 with any questions.

Selection Table

	Catalog Number	Output 1	Output 2	Output 3	Output 4	Case ${ }^{(3)}$	Pin Assignments ${ }^{(3)}$	Mating Connectors ${ }^{(3)}$
$\begin{gathered} \text { GL20 } \\ {[40 \mathrm{~W}] 25 \mathrm{~W}} \end{gathered}$	GLS22	$5 \mathrm{~V} @ 5 \mathrm{~A}[8 \mathrm{~A}]^{(6)}$	-	-	-	1	1A	1B
	GLS23	12 V @ $2.1 \mathrm{~A}[3.3 \mathrm{~A}]^{(6)}$	-	-	-			
	GLS24	$15 \mathrm{~V} @ 1.7 \mathrm{~A}[2.7]^{(6)}$	-	-	-			
	GLT22	$5 \mathrm{~V} @ 3 \mathrm{~A}[4 \mathrm{Al}]^{(7)}$	$12 \mathrm{~V} @ 1.5 \mathrm{~A}[2 \mathrm{~A}]^{(7)}$	-12 V @ 0.5 A [0.7 A]	-		2 A	
	GLT23	$5 \mathrm{~V} @ 4 \mathrm{~A}[5 \mathrm{~A}]^{(7)}$	12 V @ 0.5 A [0.7 A]	-12 V @ 0.5 A [0.7 A]	-			
	GLT24	$5 \mathrm{~V} @ 3 \mathrm{~A}[4 \mathrm{~A}]^{(7)}$	12 V @ $1.5 \mathrm{~A}[2 \mathrm{~A}]^{(7)}$	-5 V @ 0.5 A [0.7 A]	-			
	GLT25	$5 \mathrm{~V} @ 3 \mathrm{~A}[4 \mathrm{~A}]^{(7)}$	$15 \mathrm{~V} @ 1.5 \mathrm{~A}[2 \mathrm{~A}]^{(7)}$	-15 V @ 0.5 A [0.7 A]	-			
$\begin{gathered} \text { GL40 } \\ {[55 \mathrm{~W}] 40 \mathrm{~W}^{(1)}} \\ {[40 \mathrm{~W}] 25 \mathrm{~W}^{(2)}} \end{gathered}$	GLS42 ${ }^{(4)}$	5 V @ $8 \mathrm{~A}[11 \mathrm{~A}]^{(6)}$	-	-	-	1	3A	1B
	GLS43 ${ }^{(4)}$	12 V @ 3.3 A [4.5] ${ }^{(6)}$	-	-	-			
	GLS44 ${ }^{(4)}$	15 V @ $2.6 \mathrm{~A}[3.6 \mathrm{~A}]^{(6)}$	-	-	-			
	GLS45 ${ }^{(4)}$	24 V @ 1.6 A [2.3 A] ${ }^{(6)}$	-	-	-			
	GLT42 ${ }^{(4)}$	$5 \mathrm{~V} @ 4 \mathrm{~A}[5 \mathrm{~A}]^{(7)}$	$12 \mathrm{~V} @ 2 \mathrm{~A}[2.5 \mathrm{~A}]^{(7)}$	-12 V @ 0.5 A [0.7 A]	-		4A	
	GLT43	5 V @ 6 A [8A] ${ }^{(7)}$	$12 \mathrm{~V} @ 0.5 \mathrm{~A}[0.7 \mathrm{~A}]$	-12 V @ 0.5 A [0.7 A]	-			
	GLT44	$5 \mathrm{~V} @ 4 \mathrm{~A}[5 \mathrm{~A}]^{(7)}$	$12 \mathrm{~V} @ 2 \mathrm{~A}[2.5 \mathrm{~A}]^{(7)}$	-5 V @ $0.5 \mathrm{~A}[0.7 \mathrm{~A}]$	-			
	GLT45 ${ }^{(4)}$	$5 \mathrm{~V} @ 4 \mathrm{~A}[5 \mathrm{~A}]^{(7)}$	15 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]^{(7)}$	-15 V @ 0.5 A [0.7 A]	-			
	GLT46	5 V @ $4 \mathrm{~A}[5 \mathrm{~A}]^{(7)}$	$24 \mathrm{~V} @ 1 \mathrm{~A}[1.5 \mathrm{~A}]^{(7)}$	+12 V @ 0.5 A [0.7 A]	-			
$\begin{gathered} \text { GL50 } \\ {[50 \mathrm{~W}] 50 \mathrm{~W}} \end{gathered}$	GLT52 ${ }^{(4)}$	5 V @ $8 A^{(7)}$	$12 \mathrm{~V} @ 3 \mathrm{~A}^{(7)}$	-12 V @ 0.5 A	-	2	5A	2 B
	GLT53 ${ }^{(4)}$	5 V @ $8 A^{(7)}$	$15 \mathrm{~V} @ 2.4 \mathrm{~A}^{(7)}$	-15 V @ 0.5 A	-			
	GLT54 ${ }^{(4)}$	5 V @ $8 A^{(7)}$	$24 \mathrm{~V} @ 1.5 \mathrm{~A}^{(7)}$	12 V @ 0.5 A	-			
$\begin{gathered} \text { GL50 } \\ {[60 \mathrm{~W}] 60 \mathrm{~W}} \end{gathered}$	GLS52 ${ }^{(4)}$	5V@11A	-	-	-	3	6 A	2B
	GLS53-I ${ }^{(5)}$	12V@5A	-	-	-			
	GLS53 ${ }^{(4)}$	12 V @ $5 \mathrm{~A}^{(6)}$	-	-	-			
	GLS54 ${ }^{(4)}$	15 V @ $4 \mathrm{~A}^{(6)}$	-	-	-			
	GLS55 ${ }^{(4)}$	$24 \mathrm{~V} @ 2.5 \mathrm{~A}^{(6)}$	-	-	-			
	GLS58 ${ }^{(4)}$	48 V @ $1.25 \mathrm{~A}^{(6)}$	-	-	-			
$\begin{gathered} \text { GL60 } \\ {[80 \mathrm{~W}] 60 \mathrm{~W}^{(1)}} \\ {[60 \mathrm{~W}] 40 \mathrm{~W}^{(2)}} \end{gathered}$	GLS62	$5 \mathrm{~V} @ 12 \mathrm{~A}[16 \mathrm{~A}]^{(6)}$	-	-	-	4	7A	3B
	GLS63 ${ }^{(4)}$	$12 \mathrm{~V} @ 5 \mathrm{~A}[6.7 \mathrm{~A}]^{(6)}$	-	-	-			
	GLS64 ${ }^{(4)}$	$15 \mathrm{~V} @ 4 \mathrm{~A}[5.3 \mathrm{~A}]^{(6)}$	-	-	-			
	GLS65 ${ }^{(4)}$	24 V @ 2.5 $\mathrm{A}[3.3 \mathrm{~A}]^{(6)}$	-	-	-			
	GLT62 ${ }^{(4)}$	$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]^{(7)}$	$12 \mathrm{~V} @ 3 \mathrm{~A}[3.5 \mathrm{~A}]^{(7)}$	-12 V @ 0.7 A [1 A]	-		8A	4B
	GLT63 ${ }^{(4)}$	$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]^{(7)}$	15 V @ 2.8 A [3.3 A] ${ }^{(7)}$	-15 V @ 0.7 A [1 A]	-			
	GLT64	$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]^{(7)}$	$12 \mathrm{~V} @ 3 \mathrm{~A}[3.5 \mathrm{~A}]^{(7)}$	-5V@ 0.7 A [1 A]	-			
	GLT65	$5 \mathrm{~V} @ 7 \mathrm{~A}[8 \mathrm{~A}]^{(7)}$	24 V @ $1.5 \mathrm{~A}[2 \mathrm{~A}]^{(7)}$	+12 V @ 0.7 A [1 A]	-			
GL110 [110 W] $80 \mathrm{~W}^{(1)}$ [90 W] 70 W ${ }^{(2)}$	GLS114	$15 \mathrm{~V} @ 5.3 \mathrm{~A}[7.3 \mathrm{~A}]^{(6)}$	-	-	-	5	9 A	5B
	GLS115	24 V @ 3.3 $\mathrm{A}[4.6 \mathrm{~A}]^{(6)}$	-	-	-			
	GLQ112	$5 \mathrm{~V} @ 9 \mathrm{~A}[11 \mathrm{~A}]^{(8)}$	$12 \mathrm{~V} @ 4.5 \mathrm{~A}[5 \mathrm{~A}\}$	-12 V @ 0.7 A [1 A]	$\pm 5-25 \mathrm{~V} @ 2.5 \mathrm{~A}[3 \mathrm{~A}]^{(6)}$		10A	6B
	GLQ113	5 V @ $9 \mathrm{~A}[11 \mathrm{~A}]^{(8)}$	15 V @4.5 A [5 A]	-15 V @ $0.7 \mathrm{~A}[1 \mathrm{~A}]$	$\pm 5-25 \mathrm{~V} @ 2.5 \mathrm{~A}[3 \mathrm{~A}]^{(6)}$			
	GLQ114	5 V @ $9 \mathrm{~A}[11 \mathrm{~A}]^{(8)}$	12 V @ 4.5 A [5 A]	-12 V @ 0.7 A [1 A]	$24 \mathrm{~V} @ 3.5 \mathrm{~A}[4.5 \mathrm{~A}]^{(8)}$			

Notes:

[] Rating with 30 CFM of air
(4) Add "-M" suffix for the medical model numbers
(1) Power rating when no cover option is used
(5) Industrial version - Operating temperature $-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
(2) Power rating when the cover/enclosure option is used
(6) Floating output
(3) Refer to GL Series Dimensions and the sections that follow
(7) Approximate minimum loading: 10%
(8) Approximate minimum loading: 23%

Selection Table (continued)

	Catalog Number	Output 1	Output 2	Output 3	Output 4	Case ${ }^{(5)}$	Pin Assignments	Mating Connectors ${ }^{(5)}$
$\begin{gathered} \text { GLQ120 } \\ {[120 \text { W } 70 \text { W }} \end{gathered}$	GLQ123	3.3 V @ 14 A [25 A]	5 V @ 12.5 A [24 A] ${ }^{(9)}$	+12 V @ 1 A [2 A]	-12 V @ 0.5 A [1 A]	6	11A	7B
$\begin{gathered} \text { GLS120 } \\ {[130 \text { W] } 80 \text { W }} \end{gathered}$	GLS122	$5 \mathrm{~V} @ 16 \mathrm{~A}[26 \mathrm{~A}]^{(8)}$	-	-	-	7	12A	8B
	GLS123	$12 \mathrm{~V} @ 6.6 \mathrm{~A}[10.8 \mathrm{~A}]^{(8)}$	-	-	-			
$\begin{gathered} \text { GL140 } \\ {[145 \text { W] } 80 \text { W }} \end{gathered}$	GLQ142	$\begin{gathered} 5 \mathrm{~V} @ 12 \mathrm{~A}[25 \mathrm{~A}] \\ (3.3 \mathrm{~V}-5 \mathrm{~V}) \end{gathered}$	12 V @ 5 A [6 A]	$\begin{gathered} -12 \mathrm{~V} @ 1 \mathrm{~A}[1.5 \mathrm{~A}] \\ (-12 \mathrm{~V}-15 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \pm 3.3-25 \mathrm{~V} @ 1.5 \mathrm{~A} \\ {[4.5 \mathrm{~A}]^{(8)}(10)} \end{gathered}$	8	13A	9 B
GL150 [150 W] $110 \mathrm{~W}^{(1)}$ [130 W] $75 \mathrm{~W}^{(2)}$	GLS152	$5 \mathrm{~V} @ 22 \mathrm{~A}[30 \mathrm{~A}]^{(8)}$	-	-	-	9	14A	10B
	GLS153	$\begin{gathered} 12 \mathrm{~V} @ 9.1 \mathrm{~A}[12.5 \mathrm{~A}]^{(8)} \\ (12 \mathrm{~V}-15 \mathrm{~V}) \end{gathered}$	-	-	-			
	GLS155	$\begin{aligned} & 24 \mathrm{~V} @ 4.5 \mathrm{~A}[6.2 \mathrm{~A}]^{(8)} \\ &(24 \mathrm{~V}-28 \mathrm{~V}) \end{aligned}$	-	-	-			
	GLQ152	5 V @ $15 \mathrm{~A}[22 \mathrm{~A}]^{(9)}$	12 V @ 2.6 A [8 A] ${ }^{(11)}$	-12 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]^{(11)}$	$\pm 5-25 \mathrm{~V} @ 2.5 \mathrm{~A}[3 \mathrm{~A}]^{(8)}$	10	15A	11B
	GLQ153	5 V @ $15 \mathrm{~A}[22 \mathrm{~A}]^{(9)}$	$15 \mathrm{~V} @ 4.8 \mathrm{~A}[6.4 \mathrm{~A}]^{(11)}$	$-15 \mathrm{~V} @ 1.6 \mathrm{~A}[2 \mathrm{~A}]^{(11)}$	$\pm 5-25 \mathrm{~V} @ 2.5 \mathrm{~A}[3 \mathrm{~A}]^{(8)}$			
	GLQ154	5 V @ $15 \mathrm{~A}[22 \mathrm{~A}]^{(9)}$	12 V @ $6 \mathrm{~A}[8 \mathrm{~A}]^{(11)}$	-12 V @ $2 \mathrm{~A}[2.5 \mathrm{~A}]^{(11)}$	24 V @ 3.5 A [4.5 A] ${ }^{(9)}$			
GL170 [175 W] $110 \mathrm{~W}^{(1)}$ [130 W] $75 \mathrm{~W}^{(2)}$	GLS172 ${ }^{(6)}$	$\begin{gathered} 5 \mathrm{~V} @ 22 \mathrm{~A}[35 \mathrm{~A})^{(8)} \\ (2.5 \mathrm{~V}-6 \mathrm{~V}) \end{gathered}$	-	-	-	11	16A	12B
	GLS173 ${ }^{(6)}$	$\begin{gathered} 12 \mathrm{~V} @ 9.1 \mathrm{~A}[15 \mathrm{~A}]^{(8)} \\ (6 \mathrm{~V}-12 \mathrm{~V}) \end{gathered}$	-	-	-			
	GLS174 ${ }^{(6)}$	$\begin{gathered} 15 \mathrm{~V} @ 7.3 \mathrm{~A}[12 \mathrm{~A}] \\ (12 \mathrm{~V}-24 \mathrm{~V}) \end{gathered}$	-	-	-			
	GLS175 ${ }^{(6)}$	$\begin{gathered} 24 \mathrm{~V} @ 4.5 \mathrm{~A}[7.5]^{(8)} \\ (24 \mathrm{~V}-54 \mathrm{~V}) \end{gathered}$	-	-	-			
	GLQ172	$\begin{gathered} 5 \mathrm{~V} @ 15 \mathrm{~A}[30 \mathrm{~A}] \\ (3.3 \mathrm{~V}-5.5 \mathrm{~V}) \end{gathered}$	12 V @ $6 \mathrm{~A}[8 \mathrm{~A}]^{(10)}$	$\begin{gathered} -12 \mathrm{~V} @ 0.2 \mathrm{~A}[3 \mathrm{~A}] \\ (-12 \mathrm{~V}-15 \mathrm{~V}) \end{gathered}$	$\pm 3.3-25 \mathrm{~V} @ 2 \mathrm{~A}[5 \mathrm{~A}]^{(8)}$	12	17A	13B
$\begin{gathered} \text { GL250 } \\ {\left[250 \text { W] }{ }^{(3)(4)}\right.} \end{gathered}$	GLS253-C	12 V (6-12 V) @ [21 A]	-	-	-	13	18A	14B
	GLS255-C	$24 \mathrm{~V}(24-48) @[10.4 \mathrm{~A}]^{(8)}$	-	-	-			
	GLQ252-C	$5 \mathrm{~V} @[35 \mathrm{~A}]^{(11)}$	12 V @ [10 A]	-12 V @ [6 A]	$\pm 5-25 \mathrm{~V} @[6 \mathrm{~A}]^{(8)}$	14	19A	
	GLQ253-C	5 V @ [35 A] ${ }^{(11)}$	$15 \mathrm{~V} @[10 \mathrm{~A}]$	-15 V @ [6A]	$\pm 5-25 \mathrm{~V} @[6 \mathrm{~A}]^{(8)}$			
$\begin{gathered} \text { GL350 } \\ {\left[350 \text { W] }{ }^{(3)}(4)\right.} \end{gathered}$	GLS352-C	$5 \mathrm{~V}(3-6 \mathrm{~V})$ @ [70 A]	-	-	-	15	20A	15B
	GLS353-C	$\begin{aligned} & 12 \mathrm{~V}(6-12 \mathrm{~V}) \\ & @[29.2 \mathrm{~A}]^{(8)} \end{aligned}$	-	-	-			
	GLS354-C	$\begin{gathered} 15 \mathrm{~V}(12-24 \mathrm{~V}) \\ @[23.3 \mathrm{~A}]^{(8)} \end{gathered}$	-	-	-			
	GLS355-C	$\begin{gathered} 24 \mathrm{~V}(24-48 \mathrm{~V}) \\ @[14.6 \mathrm{~A}]^{(8)} \end{gathered}$	-	-	-			
	GLS355-CEF	$\begin{gathered} 24 \mathrm{~V}(24-48 \mathrm{~V}) \\ @[14.6 \mathrm{~A}]^{(8)} \end{gathered}$	-	-	-			
	GLQ352-C	$5 \mathrm{~V} @[50 \mathrm{~A}]^{(11)}$	12 V @ [12 A]	-12 V @ [6 A]	$\pm 3.3-24 \mathrm{~V} @[6 \mathrm{~A}]^{(8)}$	16	21A	16B
	GLQ352-CEF	$5 \mathrm{~V} @[50 \mathrm{~A}]^{(11)}$	12 V @ [12 A]	-12 V @ [6 A]	$\pm 3.3-24 \mathrm{~V} @[6 \mathrm{~A}]^{(8)}$			
$\begin{gathered} \text { GL500 } \\ {[500 \mathrm{~W}] 200 \mathrm{~W}} \end{gathered}$	GLS503-CF ${ }^{(7)}$	12 V @ 16.6 A [41.7 A]	-	-	-	17	22A	17B
	GLS505-CF ${ }^{(7)}$	24 V @ 8.3 A [20.8 A]	-	-	-			
	GLS508-CF ${ }^{(7)}$	48 V @ 4.2 A [10.4 A]	-	-	-			

Notes:

[] Rating with 30 CFM of air
(6) Add "-M" suffix for the medical models numbers.
(1) Power rating when no cover option is used
(7) Insert (-M) as in GLS 50x-M-CF for medical model numbers
(2) Power rating when the cover/enclosure option is used
(8) Floating output
(3) Optional fan cover, See Table 1
(9) Approximate minimum loading: 16\%
(4) Optional end fan cover, See Table 1
(10) Approximate minimum loading: 30\%
(5) Refer to GL Series Dimensions and the sections that follow
(11) Approximate minimum loading: 10\%

Visit our website at www.solahd.com or
contact Technical Services at (800) 377-4384 with any questions.

GL Series Dimensions

Case 1
(Weight: $0.5 \mathrm{lbs} / 0.23 \mathrm{~kg}$ approx.)

Case 3
(Weight: $0.41 \mathrm{lbs} / 0.18 \mathrm{~kg}$ approx.)

Case 2
(Weight: $0.45 \mathrm{lbs} / 0.20 \mathrm{~kg}$ approx.)

Case 4
(Weight: $0.75 \mathrm{lbs} / 0.34 \mathrm{~kg}$ approx.)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is ± 0.02 " $(\pm 0.5 \mathrm{~mm})$
3. Mounting holes M1 and M2 should be grounded for EMI purposes.
4. Mounting hole M1 is safety ground connection.
5. Specifications are for convection rating at factory settings at 115 Vac input, $25^{\circ} \mathrm{C}$ unless otherwise stated.

GL Series Dimensions (continued)

Bracket

Case 6
(Weight: $1.38 \mathrm{lbs} / 0.63 \mathrm{~kg}$ approx.) (See notes 7 \& 8)

Case 5
(Weight: $1.25 \mathrm{lbs} / 0.57 \mathrm{~kg}$ approx.)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is ± 0.02 ".
3. Specifications are for convection rating at factory settings unless otherwise stated.
4. Mounting holes M1 and M2 should be grounded for EMI purposes.
5. Mounting hole M1 is safety ground connection.
6. L Bracket mounting (6-32) maximum insertion depth is .20 " (5).
7. Remote inhibit requires an external 5 V @ 10 mA to activate.
8. Mounting maximum insertion depth is 0.12 ".

GL Series Dimensions (continued)

Case 7
(Weight: : $71 \mathrm{lbs} / 0.32 \mathrm{~kg}$ approx.)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is ± 0.02 ".
3. Mounting holes $\mathrm{MH} 1, \mathrm{MH} 2$ and MH 3 should be grounded for EMI purposes.
4. Mounting hole M1 is safety ground connection.
5. This power supply requires mounting on metal standoffs 0.20 " (5 m) in height.
6. Specifications are for convection rating at factory settings at 115 Vac input $25^{\circ} \mathrm{C}$ unless otherwise stated.
7. Mounting screw maximum insertion depth is 0.12 ".

GL Series Dimensions (continued)

Case 9
(Weight: $1.75 \mathrm{lbs} / 0.80 \mathrm{~kg}$ approx.)

Case 10
(Weight: 1.75 Ibs/0.80 kg approx.)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is ± 0.02 ".
3. Specifications are for convection rating at factory settings unless otherwise stated.
4. Remote inhibit requires an external 5 V @ 10 mA to activate.
5. Mounting (6-32) maximum insertion depth is 0.12 ".

GL Series Dimensions (continued)

Case 11
(Weight: $0.5 \mathrm{lb} / 0.23 \mathrm{~kg}$ approx.)

Case 12
(Weight: $2 \mathrm{lbs} / 0.91 \mathrm{~kg}$ approx.)
(See notes 1-4)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is ± 0.02 ".
3. Specifications are for convection rating at factory settings at 115 Vac input, $25^{\circ} \mathrm{C}$ unless otherwise stated.
4. Mounting screw maximum insertion depth is 0.12 ".
5. Mounting holes M1 and M2 should be grounded for EMI purposes.
6. Mounting hole M1 is safety ground connection.

GL Series Dimensions (continued)

Case 13
(Weight: $2.6 \mathrm{lbs} / 1.19 \mathrm{~kg}$ approx.)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is $\pm 0.02^{\prime \prime}$.
3. Specifications are at factory settings.
4. To enable normally closed remote inhibit, cut jumper J1.
5. Mounting maximum insertion depth is $0.12^{\prime \prime}$.

Case 14
(Weight: 3.1 lbs/1.41 kg approx.)

GL Series Dimensions (continued)

Case 15
(Weight: $3.6 \mathrm{lbs} / 1.64 \mathrm{~kg}$ approx.)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is $\pm 0.02^{\prime \prime}$.
3. Specifications are at factory settings.
4. To enable normally closed remote inhibit, cut jumper J1.
5. Mounting maximum insertion depth is $0.12^{\prime \prime}$.

Case 16
(Weight: $4 \mathrm{lbs} / 1.8 \mathrm{~kg}$ approx.)

GL Series Dimensions (continued)

Case 17
(Weight: $3.016 \mathrm{lbs} / 1.18 \mathrm{~kg}$ approx.)
Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is ± 0.02 ".
3. Specifications are at factory settings.
4. Mounting maximum insertion depth is 0.12 "

GL Series Pin Assignments

1A

Connector		GLS22	GLS23	GLS24
SK1	PIN 1	Line		
	PIN 3	Neutral		
SK2	PIN 1	+5 V	+12 V	+15 V
	PIN 2	+5 V	+12 V	+15 V
	PIN 3	+5 V	+12 V	+15 V
	PIN 4	Common		
	PIN 5	Common		
	PIN 6	Common		
SK201	PIN 1	+Sense		
	PIN 2	-Sense		

GL Series Pin Assignments (continued)

2A

Connector		GLT22	GLT23	GLT24	GLT25
SK1	PIN 1	Line			
	PIN 3	Neutral			
SK2	PIN 1	+12 V	+12 V	+12 V	+15 V
	PIN 2	+5 V	+5 V	+5 V	+5 V
	PIN 3	+5 V	+5 V	+5V	+5 V
	PIN 4	Common			
	PIN 5	Common			
	PIN 6	-12 V	-12 V	-5 V	-15 V
SK201	PIN 1	+Sense			
	PIN 2	-Sense			

3A

Connector		GLS42*	GLS43*	GLS44*	GLS45*
SK1	PIN 1	Line			
	PIN 3	Neutral			
SK2	PIN 1	+5 V	+12 V	+15 V	+24 V
	PIN 2	+5 V	+12 V	+15 V	+24 V
	PIN 3	+5 V	+12 V	+15 V	+24 V
	PIN 4	Common			
	PIN 5	Common			
	PIN 6	Common			
SK201	PIN 1	+Sense			
	PIN 2	-Sense			

4A

Connector		GLT42*	GLT43	GLT44	GLT45	GLT45*
SK1	PIN 1	Line				
	PIN 3	Neutral				
SK2	PIN 1		+12 V		+15 V	+24 V
	PIN 2	+5 V				
	PIN 3	+5 V				
	PIN 4	Common				
	PIN 5	Common				
	PIN 6			-5 V	-15 V	+12 V
SK201	PIN 1	+Sense				
	PIN 2	-Sense				

5A

Connector		GLT52*	GLT53*	GLT54*
SK1	PIN 1	Neutral		
	PIN 3	Line		
SK2	PIN 1	+5V		
	PIN 2	+5V		
	PIN 3	Common		
	PIN 4	Common		
	PIN 5	-12 V	-15 V	+12 V
	PIN 6	+12 V	+15 V	+24 V

* Same Pin Assignments are attributed to both the non-medical and medical models.

GL Series Pin Assignments (continued)

Connector		GLS52*	GLS53*	GLS54*	GLS55*	GLS58*
SK1	PIN 1	Line				
	PIN 3	Neutral				
SK2	PIN 1	+5V	+12 V	+15 V	+24V	+48V
	PIN 2	+5V	+12 V	+15 V	+24 V	$+48 \mathrm{~V}$
	PIN 3	Common				
	PIN 4	Common				
	PIN 5	-Sense				
	PIN 6	+Sense				

7A

Connector		GLS62	$\begin{gathered} \text { GLS63 } \\ \text { (GLS62-M) } \end{gathered}$	GLS64 (GLS63-M)	GLS65
SK1	PIN 1	Neutral			
	PIN 3	Line			
SK2	PIN 1	5 V	+12 V	+15 V	+24V
	PIN 2	5 V	+12 V	+15 V	+24V
	PIN 3	5 V	+12 V	+15 V	+24V
	PIN 4	Common			
	PIN 5	Common			
	PIN 6	Common			
SK201	PIN 1	+Sense			
	PIN 2	-Sense			

8A

Connector		GLT62	GLT63	GLT64	GLT65
SK1	PIN 1	Neutral			
	PIN 3	Line			
SK2	PIN 1	+12 V	+15 V	+12 V	+24V
	PIN 2	+5V	+5 V	+5 V	+5V
	PIN 3	+5 V	+5 V	+5 V	+5 V
	PIN 4	Common			
	PIN 5	Common			
	PIN 6	-12 V	-15 V	$-5 \mathrm{~V}$	+12 V
SK201	PIN 1	+Sense			
	PIN 2	-Sense			

11A

Connector		GLQ123
SK1	PIN 1	Ground
	PIN 3	Neutral
	PIN 5	Line
SK5	PIN 1	+12 V
	PIN 2	Common
	PIN 3	-12 V
SK6	PIN 1	3.3 V Single Wire Parallel
	PIN 2	-3.3 V Sense
	PIN 3	+3.3 V +Sense
	PIN 4	5 V Single Wire Parallel
	PIN 5	Common
	PIN 6	+5 V Sense
	PIN 7	-5 V Sense
	PIN 8	+ Inhibit
	PIN 9	- Inhibit
	PIN 10	Power Fail

12A

Connector		GLS120
SK1	PIN 1	Neutral
	PIN 3	Line
SK2	TB-1	Common
	TB-2	Main Output
SK3	PIN 1	+V1 Remote Sense
	PIN 2	-V1 Remote Sense
	PIN 3	+Remote Inhibit
	PIN 4	-Remote Inhibit
	PIN 5	+Power Fail
	PIN 6	Common
	PIN 7	Single Wire Parallel
	PIN 8	+12 V
	PIN 9	12 V Common
	PIN 10	+5 V Standby

[^1]9A

Connector		GLS114	GLS115
SK1	PIN 1	Ground	
	PIN 3	Neutral	
	PIN 5	Line	
SK2	PIN 1	+15 V	+24 V
	PIN 2	+15 V	+24 V
	PIN 3	+15 V	+24 V
	PIN 4	Common	
	PIN 5	Common	
	PIN 6	Common	
	PIN 7	Common	
	PIN 8	+15 V	+24 V
	PIN 9	+15 V	+24 V
SK201	PIN 1	+Sense	
	PIN 2	-Sense	
SK202	PIN 1	Power OK	
	PIN 2	Ground	

10A

Connector		GLQ112	GL0113	GLQ114
SK1	PIN 1	Ground		
	PIN 3	Neutral		
	PIN 5	Line		
SK2	PIN 1	+5 V		
	PIN 2	+5 V		
	PIN 3	+5 V		
	PIN 4	Common		
	PIN 5	Common		
	PIN 6	Common		
	PIN 7	Common		
	PIN 8	+12 V	+15 V	+12 V
	PIN 9	+12 V	+15 V	+12 V
	PIN 10	-12 V	-15 V	-12 V
	PIN 11	+5-25 V	+5-25 V	+24 V
	PIN 12	-5-25 V	-5-25 V	Common
SK201	PIN 1	+Sense		
	PIN 2	-Sense		
SK202	PIN 1	Power OK		
	PIN 2	Ground		

GL Series Pin Assignments (continued)

Connector		GLQ142
SK1	PIN 1	Ground
	PIN 3	Neutral
	PIN 5	Line
SK2	PIN 1	+12 V
	PIN 2	Common
	PIN 3	-12 V
	PIN 4	Common
	PIN 5	+5 V to +25 V (Float)
	PIN 6	Common (Float)
SK4	TB-1	Common
	TB-2	+5 V
SK3	PIN 1	No Connection
	PIN 2	DC Power Good
	PIN 3	No Connection
	PIN 4	V1 Single Wire Parallel
	PIN 5	Common
	PIN 6	+V1 Sense
	PIN 7	Sense Common
	PIN 8	+Inhibit
	PIN 9	-Inhibit
	PIN 10	Power Fail

14A

Connector		GLS152	GLS153	GLS155
SK1	PIN 1	Inhibit -ve		
	PIN 2	Inhibit +ve		
	PIN 3	VCC		
	PIN 4	No Connection		
	PIN 5	Common		
	PIN 6	-Sense		
	PIN 7	+Sense		
	PIN 8	Current Share		
SK2	PIN 5	Common		
	PIN 6	Pin Removed		
	PIN 7	Power OK		
SK3	TB-1	Common		
	TB-2	+5 V	$\begin{gathered} +12 \mathrm{~V} \text { to } \\ +15 \mathrm{~V} \end{gathered}$	$\begin{aligned} & +24 \mathrm{~V} \text { to } \\ & +28 \mathrm{~V} \end{aligned}$
SK4	PIN 1	Ground		
	PIN 3	Line		
	PIN 5	Neutral		

15A

Connector		GLQ152	GLQ153	GLQ154
SK1	PIN 1	Inhibit -ve		
	PIN 2	Inhibit +ve		
	PIN 3	+12 V	+15 V	+12V
	PIN 4	No Connection		
	PIN 5	Common		
	PIN 6	-Sense		
	PIN 7	+Sense		
	PIN 8	I Share		
SK2	PIN 1,2	+12 V	+15 V	+12 V
	$\begin{aligned} & \text { PIN } \\ & 3,4,5 \end{aligned}$	Common	Common	Common
	PIN 6	-12 V	-15 V	-12 V
	PIN 7	Power OK		
	PIN 8	+5 V to +	5 V (Float)	+24 V
	PIN 9	Comme	(Float)	Common
SK3	TB-1	Common		
	TB-2	+5 V		
SK4	PIN 1	Ground		
	PIN 3	Line		
	PIN 5	Neutral		

18A

Connector		GLS250
SK1	PIN 1	Neutral
	PIN 2	Line
	PIN 3	Ground
SK3	PIN 1	+Remote Sense
	PIN 2	-Remote Sense
	PIN 3	Remote Inhibit (N.O)
	PIN 4	Remote Inhibit (N.C)
	PIN 5	Common
	PIN 6	Current Share
	PIN 7	Power Fail
	PIN 8	DC Power Good
SK4	PIN 1	+Fan's power source (12 V @ 500 mA)
	PIN 2	-Fan's power source (12 V @ 500 mA)
SK5	PIN 1	+Supervisory output supply (5 V @ 100 mA)
	PIN 2	-Supervisory output supply (5 V @ 100 mA)
SK7	PIN 1	+Fan's power source (12 V @ 500 mA)
	PIN 2	+Fan's power source (12 V @ 500 mA)

[^2]16A

Connector		GLS17x*
SK1	PIN 1	+12 V
	PIN 2	5 V Standby
	PIN 3	Common
	PIN 4	V1 Single Wire Parallel
	PIN 5	Common
	PIN 6	+V1 Sense
	PIN 7	Sense Common
	PIN 8	Remote Inhibit
	PIN 9	DC Power Good
	PIN 10	Power OK
SK2	TB-1	Common
	TB-2	Main Output
SK3	PIN 1	Ground
	PIN 2	Line
	PIN 5	Neutral

17A

Connector		GLQ172	GLQ173
SK1	PIN 1	No Connection	V4 Single Wire Parallel
	PIN 2	5 V Standby	
	PIN 3	No Connection	+V4 Sense
	PIN 4	V1 Single Wire Parallel	
	PIN 5	Common	
	PIN 6	+V1 Sense	
	PIN 7	Sense Common	
	PIN 8	Remote Inhibit	
	PIN 9	DC Power Good	
	PIN 10	Power OK	
SK2	PIN 1,2	+12 V	
	$\begin{aligned} & \text { PIN } \\ & 3,4,5 \end{aligned}$	Common	
	PIN 6	-12 V	
	PIN 7	Power OK	
	PIN 8	$\begin{aligned} & +3.3 \mathrm{~V} \text { to }+25 \\ & \mathrm{~V} \text { (Float) } \end{aligned}$	No Connection
	PIN 9	Common (Float)	No Connection
SK3	TB-1,3	Common	
	TB-2	+5 V (3.3 V to 5.5 V$)$	
	TB-4	No Connection	$\begin{gathered} +5 \mathrm{~V}(3.3 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V}) \\ \hline \end{gathered}$
SK4	PIN 1	Ground	
	PIN 3	Line	
	PIN 5	Neutral	

Visit our website at www.solahd.com or contact Technical Services at (800) 377-4384 with any questions.

GL Series Pin Assignments (continued)

19A

Connector		GLQ250
SK1	PIN 1	Neutral
	PIN 2	Line
	PIN 3	Ground
SK2	PIN 1	+12 / 15 V
	PIN 2	Common
	PIN 3	Common
	PIN 4	-12 / 15 V
	PIN 5	5-25 V RET Float
	PIN 6	5-25 V Float
SK3	PIN 1	+Remote Sense
	PIN 2	-Remote Sense
	PIN 3	Remote Inhibit (N.O.)
	PIN 4	Remote Inhibit (N.C.)
	PIN 5	Common
	PIN 6	Current Share
	PIN 7	Power Fail
	PIN 8	DC Power Good
SK4	PIN 1	+Fan's power source (12 V @ 500 mA)
	PIN 2	+Fan's power source (12 V @ 500 mA)
SK5	PIN 1	+Supervisory output supply (5 V @ 100 mA)
	PIN 2	-Supervisory output supply $\text { (5 V @ } 100 \text { mA) }$
SK7	PIN 1	+Fan's power source (12 V @ 500 mA)
	PIN 2	+Fan's power source (12 V @ 500 mA)

22A

Connector		GL500*
CN1	PIN 1	Line
	PIN 3	Neutral
	PIN 5	Ground
	PIN 1	V1 Single Wire Parallel
	PIN 2	-Remote Sense
	PIN 3	+Remote Sense
	PIN 4	5 VSB (Standby)
	PIN 5	5 VSB Return
	PIN 6	+12 V
	PIN 7	Common
	PIN 8	Inhibit
	PIN 9	DC Power Good
	PIN 10	Power Fail (POK)
	PIN 1	5 V - ${ }^{2} \mathrm{C}$
	PIN 2	Ground
	PIN 3	A2
	PIN 4	A0
	PIN 5	SVCC2_OR
	PIN 6	${ }^{2} \mathrm{C}$ _SDA
	PIN 7	$1^{2} \mathrm{C}$ _SLC
	PIN 8	A1
	PIN 9	No Connection
	PIN 10	+12V_RTN_CTRL
Adjustment Potentiometers		
P1		1 Output Adjust

20A

Connector		GLS350
SK1	PIN 1	Neutral
	PIN 2	Line
	PIN 3	Ground
SK3	PIN 1	No Connection
	PIN 2	No Connection
	PIN 3	+Sense
	PIN 4	-Sense
	PIN 5	Power OK
	PIN 6	Current Share
	PIN 7	DC Power Good
	PIN 8	Inhibit (N.O.)
	PIN 9	Inhibit (N.C.)
	PIN 10	Common
SK4	PIN 1	+5 V aux (5V @ 100 mA)
	PIN 2	-Common
SK5	PIN 1	+Fan 1 (12 V @ 150 mA)
	PIN 2	-Common
SK6	PIN 1	+Fan 2 (12 V @ 150 mA)
	PIN 2	-Common

* Same Pin Assignments are attributed to both the non-medical and medical models.

21A

Connector		GLQ350
SK1	PIN 1	Neutral
	PIN 2	Line
	PIN 3	Ground
SK2	PIN 1	+12 / 15 V
	PIN 2	Common
	PIN 3	Common
	PIN 4	-12 / 15 V
	PIN 5	3.3-25 V RET Float
	PIN 6	3.3-25 V Float
SK3	PIN 1	+Sense V4
	PIN 2	-Sense V4
	PIN 3	+Sense V1
	PIN 4	-Sense V1
	PIN 5	Power OK
	PIN 6	Current Share
	PIN 7	DC Power Good
	PIN 8	Inhibit (N.O.)
	PIN 9	Inhibit (N.C.)
	PIN 10	Common
SK4	PIN 1	+Fan 1 (12 V @ 150 mA)
	PIN 2	-Common
SK5	PIN 1	+5 V aux (5 V@ 100 mA)
	PIN 2	-Common
SK6	PIN 1	+Fan 2 (12 V @ 150 mA)
	PIN 2	-Common

GL Series Mating Connectors

1B*

Connector Kit \#70-841-006 includes the following:	
AC Input:	Molex 09-50-8031 (USA) Not required for (-T) option 09-91-0300 (UK) PINS: 08-52-0113 (-0111 for medical)
DC Outputs:	Molex 09-50-8061 (USA) Not required for (-T) option 09-91-0600 (UK) PINS: 08-52-0113 (-0111 for medical)
Remote Sense:	Molex 22-01-2025 PINS: 08-52-0123 (-0114 for medical)

4B*

Connector Kit \#70-841-006 includes the following:
AC Input:
:---
09-91-0300 (UK)
PINS: 08-58-0111

09-91-0600 (UK)

PINS: 08-52-0113\end{array}\right|\)| DC |
| :--- |
| Outputs: |
| Remote
 Sense: |
| Molex 22-01-2025
 PINS: 08-52-0113 |

2B*

$\left.$| Connector Kit \#70-841-006 includes the
 following: |
| :--- |
| AC Input: | | Molex 09-50-8031 (USA) |
| :--- |
| 09-91-0300 (UK) |
| PINS: 08-52-0113 | \right\rvert\,

5B

Connector Kit \#70-841-007 includes the following:	
AC Input:	Molex 09-50-8051 (USA) 09-91-0500 (UK) PINS: 08-58-0111
DC	Molex 09-50-8091 (USA) 09-91-0900 (UK) Outputs:
RINS: 08-58-0111	
Powote Sense/	Molex 22-01-1022 (USA) 22-01-1023 (UK)
PINS: 08-50-0114	

3B*

Connector following: \#70-841-006 includes the	
	Molex 09-50-8031 (USA) Not required for (-T) option
AC Input:	09-91-0300 (UK) PINS: 08-58-0111 (-0113 for medical)
DC	Molex 09-50-8061 (USA) Not required for (-T) option Outputs: O9-91-0600 (UK) PINS: 08-58-0113
Remote Sense:	Molex 22-01-2025 PINS: 08-52-0113

6B

$\left.$| Connector Kit \#70-841-008 includes the
 following: |
| :--- |
| AC Input: | | Molex 09-50-8051 (USA) |
| :--- |
| 09-91-0500 (UK) |
| PINS: 08-58-0111 | \right\rvert\,

9B

Connector Kit \#70-841-017 includes the following:					
(SK1) AC Input:	Molex 09-50-8051 (USA) 09-91-0500 (UK) PINS: $08-58-0111$				
(SK2) Aux	Molex: 09-50-8061 (USA) Molex: 09-91-0600 (UK)				
DC Outputs:					
PINS: 08-58-0111		$	$	(SK6)	Mole: 90142-0010 (USA)
:---	:---				
Control	PINS: 90119-2110 or				
Signals:	AMP: 87977-3				
PINS: 87309-8					

[^3] and medical models.
7B
Connector Kit \#70-841-012 includes the following:

(SK1)	Molex 09-50-8051 (USA) O9-91-0500 (UK)				
AC Input:	PINS: 08-58-0111	$	$	SK2,3,4:	Molex series 19141-0058/0063
:---	:---				
(SK5)	Molex: 09-50-8031 (USA)				
Molex: 09-91-0300 (UK)					
$\mathbf{1 2 V}:$	PINS: 08-58-0111				
(SK6)	Molex: 90142-0010; Control				
PINS: 90119-2110 or					
Signals:	AMP: 87977-3; PINS: 87309-8				

8B

Connector Kit \#70-841-020 includes the following:	
(SK1) AC Input:	Molex 09-50-8031 (connecto PINS: 08-52-0113
(SK2) DC Outputs:	Molex series 191410058/0063 Spade lug
(SK3) Control Signals:	Molex: 90142-0010 (USA) PINS: 90119-2110 or AMP: 87977-3 PINS: 87309-8

Visit our website at www.solahd.com or

GL Series Mating Connectors (continued)

10B

Connector Kit \#70-841-009 includes the following:	
(SK4) AC Input:	Molex: 09-50-8051 (USA) Mole::09-91-0500 (UK) PINS: 08-58-0111
(SK2) Power Fail:	Molex: 09-50-8031 (USA) Molex: 09-91-0300 (UK) PINS: 08-58-0111
(SK1) Remote Sense/ Remote Inhibit:	Molex 51110-0851 (USA) PINS: 50394-8100

11B
Connector Kit \#70-841-010 includes the following:

(SK4)	Molex: 09-50-8051 (USA)
AC Input:	Molex:09-91-0500 (UK)
PINS: 08-58-0111	
(SK2) Aux DC	Molex: 09-50-8091 (USA)
Outputs/ Power Fail:	Molex: 09-91-0900 (UK)
PINS: 08-58-0111	
(SK1) Remote Sense/ Remote Inhibit:	Molex 51110-0851 (USA) PINS: 503-94-8100

12B*
Connector Kit \#70-841-016 includes the following:

	Molex: 09-50-8051 (USA)			
(SK4)	Molex:09-91-0500 (UK)			
PINS: 08-58-0111		\quad	(SK3)	
:---	:---			
DC Outputs:	Molex: 19141-0058			
(SK1) Remote Sense/ Remote Inhibit:	Molex 90142-0010 (USA) Amp: 879119-2110 PINS: 87309-8			

13B

Connector Kit \#70-841-015 includes the following:	
(SK4) AC Input:	Molex 09-50-8051 (USA) Molex:09-91-0500 (UK) PINS: 08-58-0111
(SK3)	Molex series 19141-0058/0063
Main Output:	Molex 09-50-8091 (USA)
(SK2) Aux DC Outputs/ Power Fail:	Molex Molex:09-91-0900 (UK) PINS: 08-58-0111
(SK1) Control Signals:	Molex: 90142-0010 (USA) PINS: $90119-2110$ or AMP: 87977-3 PINS: 87309-8

14B
Connector Kit \#70-841-005 includes the following:

SK3	Molex 22-01-1084; PINS: 08-70-0057
SK4	Molex 22-01-3027; PINS: 08-50-0114
SK5	Molex 22-01-3027; PINS:08-50-0114
SK7	Molex: 22-01-3027 PINS: 08-50-0114

15B
Connector Kit \#70-841-011 includes the following:

SK3	Molex 22-01-1104; PINS: 08-70-0057
SK4	Molex 22-01-3027; PINS: 08-50-0114
SK5	Molex 22-01-3027; PINS:08-50-0114
SK6	Molex: 22-01-3027; PINS: 08-50-0114

16B

Connector Coll \#70wing: foll	
SK3	Molex 22-01-1084; PINS: 08-70-0057
SK4	Molex 22-01-3027; PINS: 08-50-0114
SK5	Molex 22-01-3027; PINS:08-50-0114
SK6	Molex: 22-01-3027; PINS: 08-50-0114

* Same Mating Connectors are attributed to both standard and medical models.

17B

Connector Kit \#70-841-024 includes the following:	
SK4,5,6	Molex 19141-0058
SK7 Control Signals	Molex 90142-0010; PINS: 90119-2110 or AMP: 87977-3; PINS: 87309-8
SK8	Molex 22-01-2025; PINS:08-52-0123
CN403	JST PHDR-10VS PINS: JST 5PHD-002T-PO.5-L/P or Landwin 2050 S1000; PINS: 2053T011P

GL Compact Series: Single Output Switchers

The GL Compact Series combines both medical and non-medical approvals into one unit. These models offer very high reliability, high efficiency, active Power Factor Correction, compact size and very low ground leakage current.

Each model of GL100-M and GL200-M series complies with the medical and ITE safety standards, enabling it to be used for both medical or non-medical standard applications.

Features:

- Medical Approvals
- Smaller Size
- Dual Rating
- High demonstrated MTBF

- Automatic overvoltage protection
- Overload protection
- Extensive safety approvals
- Two year limited warranty

Specifications

Selection Table

Medical and Non-Medical Series									
	Catalog Number	Description	Output 1	Output 2	Output 3	Output 4	Case*	Pin Assignments ${ }^{\star}$	Mating Connectors
GL100-M	GLS102-M	5 V 150W 2" ${ }^{\prime \prime}$ "	5 V @ 16 A [24 A]	-	-	-	1	1A	1B
	GLS103-M	$12 \mathrm{~V} 150 \mathrm{~W} 2^{\prime \prime} \times 4$ "	12 V @ 8.3 A [12.5 A]	-	-	-			
	GLS104-M	$15 \mathrm{~V} 150 \mathrm{~W} 2^{\prime \prime} \times 4$ "	15 V @ 6.7 A [10 A]	-	-	-			
	GLS105-M	24 V 150W $2^{\prime \prime} \times 4^{\prime \prime}$	24V@4.2 A [6.3 A]	-	-	-			
	GLS108-M	$48 \mathrm{~V} 150 \mathrm{~W} 2^{\prime \prime} \times 4$ "	48 V @ 2.1 A [3.1 A]	-	-	-			
GL200-M	GLS202-M	$5 \mathrm{~V} 250 \mathrm{~W} 3^{\prime \prime} \times 5^{\prime \prime}$	5 V @ 20 A [40 A]	-	-	-	2	2 A	2B
	GLS203-M	$12 \mathrm{~V} 250 \mathrm{~W} 3^{\prime \prime} \times 5^{\prime \prime}$	12 V @ 10.3 A [20.8 A]	-	-	-			
	GLS204-M	$15 \mathrm{~V} 250 \mathrm{~W} 3^{\prime \prime} \times 5^{\prime \prime}$	15 V @ 8.3 A [16.6 A]	-	-	-			
	GLS205-M	$24 \mathrm{~V} 250 \mathrm{~W} 3^{\prime \prime} \times 5^{\prime \prime}$	24 V @ 5.2 A [10.4 A]	-	-	-			
	GLS208-M	$48 \mathrm{~V} 250 \mathrm{~W} 3^{\prime \prime} \times 5^{\prime \prime}$	48 V @ 2.6 A [5.2 A]	-	-	-			

* Refer to GL Series Dimensions and the sections that follow

GL Compact Series Dimensions

Case 1
(Weight: $0.44 \mathrm{lb} / 0.20 \mathrm{~kg}$ approx.)

Case 2
(Weight: $0.75 \mathrm{lb} / 0.34 \mathrm{~kg}$ approx.)

Notes:

1. Specifications subject to change without notice.
2. All dimensions in inches (mm), tolerance is ± 0.02 ".
3. Mounting holes $\mathrm{MH} 1, \mathrm{MH} 2, \mathrm{MH} 3$ should be grounded for EMI purposes.
4. Mounting MH 1 is safety ground connection.
5. Specifications are for convection rating at factory settings at 115 Vac input $25^{\circ} \mathrm{C}$ unless otherwise stated.
6. This power supply requires mounting on metal standoffs $0.20^{\prime \prime}$ (5 m) in height.

GL Compact Series Pin Assignments

Connector		GLS102M	GLS103M	GLS104M	GLS105M	GLS108M
SK1	PIN 1	Neutral				
	PIN 3	Line				
SK2	PIN 1	Ground				
	PIN 2	Ground				
	PIN 3	Ground				
	PIN 4	Ground				
	PIN 5	+5	+12	+15	+24	+48
	PIN 6					
	PIN 7					
	PIN 8					
SK 203	PIN 1	Ground				
	PIN 2	Power Fail				
	PIN 3	-Remote Sense				
	PIN 4	+Remote Sense				
SK5	PIN 1	+12 V Fan				
	PIN 2	+12 V Fan				
	PIN 3	Fan Ground				
	PIN 4	Fan Ground				

2A

Connector		GLS202M	GLS203M	GLS204M	GLS205M	GLS208M
SK1	PIN 1	Neutral				
	PIN 3	Line				
SK2	TB-1	Common				
	TB-2	+5	+12	+15	+24	+48
SK3	PIN 1	+V1 Remote Sense				
	PIN 2	-V1 Remote Sense				
	PIN 3	No Connection				
	PIN 4	No Connection				
	PIN 5	+Power Fail				
	PIN 6	Common				
SK 203	PIN 7	No Connection				
	PIN 8	Common				
	PIN 9	+12 V Fan				
	PIN 10	+12 V Fan Ground				

GL Compact Series Mating Connectors

1B

Connector Kit \#70-841-025 includes the following:	
(SK1) AC Input:	Molex P/N 09-50-3031 or Landwin P/N: 3060S0302
(SK2) DC Outputs:	Molex P/N 09-50-3081 or Landwin P/N: 3060S0802
(SK203) Remote Sense:	Molex P/N 35155-0400 or Landwin P/N: 2640S04A0
(SK5) Fan:	Molex P/N 22-10-2047 or Landwin P/N: 2510S0400

Connector Kit \#70-841-018 includes the following:	
(SK1)	
AC Input:	Molex 09-50-8031 (connector) PINS: 08-52-0113
(SK2)	
DC Outputs:	Molex 19141-0058/0063 Spade lug
(SK3) Control Signals:	Molex: 90142-0010 (USA) PINS: 90119-2110 or Amp: 87977-3 / PINS: 87309-8

SHP Series: Heavy Duty Modular Power Supplies

These high power, modular power supplies, from 1500 through 2000 watts, are capable of up to 12 independent outputs. Modular design makes these units easy to customize for unusual voltage and power combinations. All units have power factor corrected inputs, an end mounted fan for cooling and a variety of built-in signals and controls. High reliability and a flexible design make these an excellent choice for process control and semiconductor fabrication applications.

Features

- Capable of up to 12 outputs
- Single output 24 V up to 87.4 A
- IEC 801 immunity standards
- Current Share on all outputs
- End mounted fan
- Voltage adjustment on all outputs $\pm 10 \%$
- Overload protection on all outputs
- Power factor correction (. 99 typ.)
- Margining on all outputs
- Modular Construction
- Signals
- Global and individual module inhibits/enable
- Single phase and three phase inputs
- Two year warranty

Applications

- Process Controls
- Semi-conductor Fabrication
- Automated Service Equipment

Related Products

- Surge Suppression
- SCD DC to DC Converters
- Active Tracking ${ }^{\circledR}$ Filters

Specifications

Parameter	Condition	Limit
Input		
Input Voltage	SH Series	86 to $264 \mathrm{Vac}(1 \varnothing)$
	S3H Series	180 to 264 (3Ø)
Frequency		47 to 440 Hz
Protection		Internally Fused
Inrush Current		40A Max
Output		
Line Regulation	Full Rated Load	0.2\% or 5 mV max
Load Regulation	Full Rated Load	0.2% or 5 mV max
Minimum Loading	Where indicated	
Temp. Coefficient		$\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Hold up Time	Full Rated Load	No less than 20 ms
Overvoltage Protection		2-5 V 122\% to 134\%
Short-Circuit Protection	Continuous	Protected for short-circuit, auto-recovery
Output Ripple		0.1\% or 10mV RMS
General		
Operating Temperature	Full Rated Load	-10 to $50^{\circ} \mathrm{C}$
Storage Temperature		-55 to $+85^{\circ} \mathrm{C}$
Efficiency	Full Rated Load	75% to 82\%
MTBF		>500,000 hours
Shock \& Vibration		MIL-HDBK 810E
EMI		CISPR 22, EN55022 Level B
Safety	All Models	UL, CE and CSA
Cooling		Internal DC fan 24

Selection Tables

Single Phase 1500 Watt, SH15 Series

Catalog Number	Output 1	Output 2	Output 3	Output 4	Maximum Output
SH15-Q2	$3.3 \mathrm{~V}, 300 \mathrm{~A}$	-	-		1500 W
SH15-Q3	$5 \mathrm{~V}, 300 \mathrm{~A}$	-	-	1500 W	
SH15-Q4	$12 \mathrm{~V}, 125 \mathrm{~A}$	-	-	1500 W	
SH15-Q5	$15 \mathrm{~V}, 100 \mathrm{~A}$	-	-	1500 W	
SH15-Q6	$24 \mathrm{~V}, 62.4 \mathrm{~A}$	-	-	1500 W	
SH15-Q7	$28 \mathrm{~V}, 53.4 \mathrm{~A}$	-	-	1500 W	
SH15-Q8	$36 \mathrm{~V}, 41.6 \mathrm{~A}$	-	-	1500 W	
SH15-Q9	$48 \mathrm{~V}, 31.2 \mathrm{~A}$	-	-	1500 W	
SH20-P3T53J4	$5 \mathrm{~V}, 150 \mathrm{~A}$	$24 \mathrm{~V}, 10.5 \mathrm{~A}$	$12 \mathrm{~V}, 25 \mathrm{~A}$	$12 \mathrm{~V}, 20 \mathrm{~A}$	1500 W
SH20-P3T54J5	$5 \mathrm{~V}, 150 \mathrm{~A}$	$24 \mathrm{~V}, 10.5 \mathrm{~A}$	$15 \mathrm{~V}, 20 \mathrm{~A}$	$15 \mathrm{~V}, 20 \mathrm{~A}$	1500 W

Single Phase 2000 Watt, SH20 Series

Catalog Number	Output 1	Output 2	Output 3	Output 4	Output 5	Output 6	Maximum Output
SH20-03K3-7	$5 \mathrm{~V}, 420 \mathrm{~A}$	-	-	-	-	-	2000 W
SH20-06K6-7	$24 \mathrm{~V}, 87.4 \mathrm{~A}$	-	-	-	-	-	2000 W
SH20-09K9-7	$48 \mathrm{~V}, 43.7 \mathrm{~A}$	-	-	-	-	-	2000 W
SH20-M3K2	$5 \mathrm{~V}, 240 \mathrm{~A}$	$3.3 \mathrm{~V}, 120 \mathrm{~A}$	$12 \mathrm{~V}, 4 \mathrm{~A}$	-	-	-	2000 W
SH20-Z6Z7M3	$5 \mathrm{~V}, 240 \mathrm{~A}$	$12 \mathrm{~V}, 21 \mathrm{~A}$	$12 \mathrm{~V}, 20 \mathrm{~A}$	$5 \mathrm{~V}, 50 \mathrm{~A}$	$15 \mathrm{~V}, 10 \mathrm{~A}$	$24 \mathrm{~V}, 5 \mathrm{~A}$	2000 W

Three Phase 1500 Watt, S3H15 Series

Catalog Number	Output 1	Output 2	Output 3	Output 4	Maximum Output
S3H15-Q2	$3.3 \mathrm{~V}, 300 \mathrm{~A}$	-	-	-	1500 W
S3H15-Q3	$5 \mathrm{~V}, 300 \mathrm{~A}$	-	-	-	1500 W
S3H15-Q4	$12 \mathrm{~V}, 125 \mathrm{~A}$	-	-	-	1500 W
S3H15-Q5	$15 \mathrm{~V}, 100 \mathrm{~A}$	-	-	-	1500 W
S3H15-Q6	$24 \mathrm{~V}, 62.4 \mathrm{~A}$	-	-	-	1500 W
$\mathbf{S 3 H 1 5 - Q 7}$	$28 \mathrm{~V}, 53.4 \mathrm{~A}$	-	-	-	1500 W
$\mathbf{S 3 H 1 5 - Q 8}$	$36 \mathrm{~V}, 41.6 \mathrm{~A}$	-	-	-	1500 W
S3H15-Q9	$48 \mathrm{~V}, 31.2 \mathrm{~A}$	-	-	1500 W	
$\mathbf{S 3 H 2 0 - P 3 T 5 3 J 4}$	$5 \mathrm{~V}, 150 \mathrm{~A}$	$24 \mathrm{~V}, 10.5 \mathrm{~A}$	$12 \mathrm{~V}, 25 \mathrm{~A}$	1500 W	
$\mathbf{S 3 H 2 0 - P 3 T 5 4 J 5}$	$5 \mathrm{~V}, 150 \mathrm{~A}$	$24 \mathrm{~V}, 10.5 \mathrm{~A}$	$15 \mathrm{~V}, 20 \mathrm{~A}$	$15 \mathrm{~V}, 20 \mathrm{~A}$	1500 W

Three Phase 2000 Watt, S3H20 Series

Catalog Number	Output 1	Output 2	Output 3	Output 4	Output 5	Output 6	Maximum Output
S3H20-Q3K3-7	$5 \mathrm{~V}, 420 \mathrm{~A}$	-	-	-	-	-	
S3H20-Q6K6-7	$24 \mathrm{~V}, 87.4 \mathrm{~A}$	-	-	-	-	-	
S3H20-Q9K9-7	$48 \mathrm{~V}, 43.7 \mathrm{~A}$	-	-	-	-	-	
S3H20-M3K2	$5 \mathrm{~V}, 240 \mathrm{~A}$	$3.3 \mathrm{~V}, 120 \mathrm{~A}$	-	-	-	-	
$\mathbf{S 3 H 2 0 - Z 6 Z 7 M 3}$	$5 \mathrm{~V}, 240 \mathrm{~A}$	$12 \mathrm{~V}, 21 \mathrm{~A}$	$12 \mathrm{~V}, 20 \mathrm{~A}$	$5 \mathrm{~V}, 50 \mathrm{~A}$	$15 \mathrm{~V}, 10 \mathrm{~A}$	2000 W	

SH15 \& S3H15 Dimensions

Back

SH20 \& S3H20 Dimensions

Visit our website at www.solahd.com or
contact Technical Services at (800) 377-4384 with any questions.

39 Series Copper Line

Features

- Full range adjustable output voltage and current
- Universal 120/240 Vac, 50/60 Hz input
- Single supply for multiple applications
- Parallel operation for increased power output
- UL Recognized

Applications

- Engineering bench supply
- Test equipment
- Manufacturing test applications
- Automotive product testing

Dimensions

Selection Table

Power Watts	Catalog Number	Maximum Current		Shipping Amps* @25 Vdc (Adj. 2.5-25 Vdc)
300	$\mathbf{3 9 - 4 0 7}$	12 A	6 A	$23(10.4)$
600	$\mathbf{3 9 - 4 0 8}$	24 A	12 A	$30(13.6)$
1200	$\mathbf{3 9 - 4 0 9}$	48 A	24 A	$73(33.1)$

* Current listed is the maximum at any voltage in that range.

Model	A	\mathbf{B}	$\mathbf{B 1}$	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	$\mathbf{F 1}$	\mathbf{G}	$\mathbf{G 1}$
$\mathbf{3 9 - 4 0 7}$	10.4	-	7.7	6.8	3.8	5.3	-	3.5	-	3.6
$\mathbf{3 9 - 4 0 8}$	11.4	-	7.7	6.8	3.8	5.3	-	3.5	-	4.6
$\mathbf{3 9 - 4 0 9}$	14.0	11.1	-	10.0	6.0	8.0	8.3	-	3.5	-

[^0]: * Paralleling will violate Class 2 current limits.

[^1]: * Same Pin Assignments are attributed to both the non-medical and medical models.

[^2]: * Same Pin Assignments are attributed to both the non-medical and medical models.

[^3]: * Same Mating Connectors are attributed to both standard

