

TECHNICAL LIBRARY

AS A SERVICE TO THE HYDROCARBON MEASUREMENT INDUSTRY, <u>CRT-SERVICES</u> CURATES THIS COLLECTION OF DIGITAL RESOURCES.

WWW.CRT-SERVICES.COM WWW.CRTSUPPLY.COM 11133 INTERSTATE 45 S SUITE O CONROE, TEXAS 77302 (713) 242-1190

Innovative Technologies

Flow-X

Liquid USC Application Manual

Operation Configuration ProductFlow-XLiquid USC Application ManualReference number02.10.03.A-2ERevisionC.0DateJuly 2011AuthorH. v. Dal

Disclaimer

Spirit FC has taken care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the issue of the information or programs contained herein.

Special note

The information contained in this document is the property of Spirit FC B.V., and may not be reproduced (wholly or in part) used or disclosed without the prior consent of Spirit FC B.V. and then on condition only that this notice is included in any reproduction or disclosure. The copyright and the foregoing restriction on copying, use and disclosure extent to all media in which this information may be embodied including magnetic storage.

Printed in the Netherlands.

Copyright© 2008-2010 Spirit FC B.V., Eindhoven, the Netherlands. All rights reserved.

- Flow -X is a registered trademark of Spirit Holding B.V.
- Microsoft Windows is a registered trademark of Microsoft Corporation.
- [®] Microsoft Excel is a registered trademark of Microsoft Corporation.

Visit Spirit on the Web: <u>http://www.spiritIT.com</u>

Table of contents

Document Co	ntrol	1-8
Revisio	on Coding	1-8
	on History	
	, Revision A.O	
	Revision B.0	
	Revision B.1	
	Revision C.0	
Chapter 1 -	Introduction	1-11
	set of manuals	
Purpos	e of this manual	1-11
Overvi	ew	1-11
Abbrev	<i>v</i> iations	1-12
Terms	and definitions	1-15
Docum	nent conventions	1-18
Chantor 2	Application overview	2 10
Chapter 2 -		
Input a	and output signals	
	Flow meter input	
	Process inputs	
	Digital I/O	
	Analog outputs	
	Densitometers	
	Pulse outputs	
	operation	
Provin	g capability	2-23
Contro	l features	2-23
Chapter 3 -	Operation	3-25
Meter	K-factor	3-25
	factor	
	rature	
	re	
	· · · Y	
2 011010	, Observed & Standard density / gravity	
	Single densitometer	
	Dual densitometer	
Produ	t	
	ng	
Datem	Ending the current batch	
	Defining the batch stack	
Drovin	Recalculate a previous batch g	
	g ng	
•	-	
	control	
Flow c	ontrol	3-36
Chapter 4 -	Configuration	4-38
Introd	uction	4-38

Setting	up the I/O	4-38
	Analog inputs	4-38
	RTD inputs	4-39
	Analog outputs	4-40
	Digital IO assignments	4-41
	Digital IO settings	
	Pulse input	
	Time period inputs	
	Pulse outputs	
Forcing	g I/O	
	setup	
e verai	Overall setup	
	Period settings	
	Totalizer settings	
	Display levels	
	Auto batch end	
	System data	
Motor	run setup	
wieter	Run setup	
	Flow meter setup	
	Pulse input	
	Smart meter	
	Orifice	
	dP inputs	
	Data valid input	
	Flow direction input	
	Meter body correction	
	up the temperature	
	up the pressure	
Setting	up the density / gravity	
	Observed density/gravity	
	Densitometer	
	Standard density / gravity	
	up a BS&W input	
	up a viscosity input	
	up pulse outputs	
	up analog outputs	
Produc	t definition	4-77
Proving	J	
	Prover setup	4-81
	Operational settings	4-87
	Stability check	4-88
	Meter factor tests	4-89
	Prove report	
Sample	er control	
•	ontrol	
Flow co	ontrol	4-96
Chapter 5 -	Maintenance mode	5-100
-		
Chapter 6 -	Flow computations	
API Pet	roleum Measurement Tables	
	Volume correction for pressure	
	NGL and LPG tables	
	Overview of hydrocarbon liquid conversion standards	6-103
	Overview of the functions	6-105

	Hydrometer Correction	6-106
	API-2540 Input Data Limits	
	API-2540 - Rounding and truncating rules	6-107
	API-11.1:2004 Limits	6-107
	API constants	6-107
Vo	plume Correction factor C_{TL}	6-108
De	ensity calculations	6-109
De	ensitometer calculations	6-110
	Solartron densitometers	6-110
	Sarasota densitometers	6-111
	UGC densitometers	6-112
	Densitrak densitometers	6-112
Vi	scosity correction	6-113
Co	prrection for Sediment and Water (BS&W)	6-114
	ow Rate for Volumetric Flow Meters	
	Indicated volume flow rate	6-114
	Gross volume flow rate	6-115
	Mass flow rate	6-115
	Gross standard volume flow rate	6-115
	Net standard volume flow rate	6-115
Flo	bw Rate for Mass Flow Meters	
	Mass volume flow rate	6-116
	Gross volume flow rate	6-117
	Gross standard volume flow rate	6-117
	Net standard volume flow rate	6-117
Flo	ow rate for Liquid Orifice Plate Meters	
	Mass flowrate (AGA-3)	
	Mass flowrate in practical working units [Klbm/hr]	6-118
	Gross volume flow rate	6-118
	Gross standard volume flow rate	6-118
	Net standard volume flow rate	6-119
	Orifice Plate and pipe diameter (Corrected) at operating temperature	
	Reynolds Number	
Di	fferential pressure cell selection	
	over Calculations	
Chapter 7	- Reports	7-126
St	andard reports	7-126
Chapter 8	- Communication	8-128
-	andard Modbus communication list	8-128
Chapter 9	- Historical Data Archives	9-130
	andard Data Archives	0_120
50		5-130

List of figures

Figure 1: Analog output dampening factor	4-40
Figure 2: Flow direction from dual pulse signal	4-43
Figure 3: Prover detector switches	4-83

List of tables

Table 1 : Supported API MPMS standards	
Table 2: Table A input data limits for API MPMS 11.1:1980 (API 2540)	6-106
Table 3: Table B input data limits for API MPMS 11.1:1980 (API 2540)	6-106
Table 4: Table D input data limits for API MPMS 11.1:1982	6-107
Table 5: API-11.1: 2004 input data limits	6-107
Table 6: API-11.1 constants	
Table 7: Standard reports	

List of equations

Equation 6-1: Volume Correction Factor C_{TL}	
Equation 6-2: Tangent thermal expansion coefficient α_T	
Equation 6-3: Volume Correction Factor C _{PL} 6-109	
Equation 6-4: Meter density calculation	
Equation 6-5: Standard density calculation6-110	
Equation 6-6: Relative density calculation6-110	
Equation 6-7: Uncorrected density (Solartron)	
Equation 6-8: Density corrected for temperature (Solartron)	
Equation 6-9: Density corrected for Pressure (Solartron)	
Equation 6-10: Corrected density (Sarasota)	
Equation 6-11: Uncorrected density (UGC)	
Equation 6-12: Corrected density (UGC)	
Equation 6-13: Uncorrected density (Densitrak)	
Equation 6-14: Density corrected for temperature (Densitrak)	
Equation 6-15: Density corrected for temperature (Densitrak)	
Equation 6-16: Viscosity correction factor for turbine flow meters	
Equation 6-17: Viscosity correction factor for positive displacement flow meters	
Equation 6-18: Volume Correction Factor C _{BSW}	
Equation 6-19: Indicated volume flow rate	
Equation 6-20: Gross volume flow rate (volumetric flow meters)	
Equation 6-21: Mass volume flow rate (volumetric flow meters)	
Equation 6-22: Gross standard volume flow rate (volumetric flow meters)	
Equation 6-23: Net standard volume flow rate (volumetric flow meters)	
Equation 6-24: Mass flow rate (mass flow meters with pulse signal)	
Equation 6-25: Mass flow rate (mass flow meters with smart signal)	
Equation 6-26: Gross volume flow rate (mass flow meters)	
Equation 6-27: Gross volume flow rate (mass flow meters)	
Equation 6-28: Net standard volume flow rate (mass flow meters)	
Equation 6-29: AGA-3 mass flow rate	
Equation 6-30: Mass flow rate in practical working units (orifice plate)	
Equation 6-31: Gross volume flow rate (orifice plate)	
Equation 6-32: Gross volume flow rate (orifice plate)	
Equation 6-33: Net standard volume flow rate (orifice plate)	
Equation 6-34: Orifice Diameter correction	

Equation 6-35: Pipe Diameter correction	6-119
Equation 6-36: Beta ratio calculation	6-119
Equation 6-37: AGA3 Reynolds Number based on Pipe diameter	6-120
Equation 6-38: AGA3 Velocity of Approach calculation	6-120
Equation 6-39: AGA3 Reynolds Expansion Factor (Gas)	6-120
Equation 6-40: Prover Meter Factor.	6-123
Equation 6-41: C _{TSP} calculation for pipe provers	6-123
Equation 6-42: C _{TSP} calculation for compact provers	6-124
Equation 6-43: C _{PSP} calculation	6-124

Document Control

Revision Coding

Our documents are supplied with a revision code. This code has the following format: <major revision letter>.<minor revision number>. Initially, the document has revision code A.0. When in the next release of the document minor changes were implemented, the minor revision number increases. When major changes have been implemented, the major revision number increments.

Example document:

- A.0 First revision
- A.1 Second revision with minor changes implemented
- A.2 Third revision, with other minor changes
- B.0 Fourth revision, with (a) major change(s).

The revision coding will be modified for each new release of a document.

All software packages and software modules or components will be provided with a version number. This number consists of three parts: A release number, a major revision number and a minor revision number separated by decimal points. A release number identifies the generation number of the software, the major number refers to the main functionality of the program, seen from the user's point of view, while the minor revision number identify a new software version.

Example program:

1.01.001	Initial release
1.01.002	Minor change
1.02.001	Major change
2.01.001	Family change

Revision History

Revision A.0

Author	:	J.C.H.M. van Dal
Date	:	February 2010

Initial, preliminary release of the Flow-X Manual Volume IIB - Liquid US Customary Application.

Revision B.0

Author : J.C.H.M. van Dal Date : June 2010

Second release describing the added features, such as batch stack, product stack and historical data archives.

Document Control - Revision History

Revision B.1

Author	:	J.C.H.M. van Dal
Date	:	July 2010

Added description of batch recalculations and PID Control. Added API 1952 calculations

Revision C.0

Author : J.C.H.M. van Dal Date : July 2010

Major update describing the new functionality

Document Control - Revision History

This page is left blank intentionally.

Introduction - Flow-X set of manuals

Chapter 1 - Introduction

Flow-X set of manuals

Welcome to the exciting world of Flow-X!

Using one of our Flow-X products, you are able to create your own flow-measurement solution, fully adapted to your specific needs.

This manual is the Installation manual for all Flow-X models. There are three reference manuals:

- Volume I Installation manual, with the installation instructions.
- Volume II- The manuals for basic operation and configuration of the Flow-X flow computers when using our standard Flow-X software applications.
 - IIA Operation and configuration
 - IIB Gas Metric application
 - IIC Liquid Metric application
 - IID Gas US customary units application [not available yet]
 - IIE Liquid US customary units application
- Volume III The manuals for solutions that exceed our standard applications. This volume consists of 1 part:
 - IIIB Function reference

Purpose of this manual

The Flow-X manuals are written for a variety of readers:

- The application developer, who is interested in all details required to develop a complete flow measurement solution with a Flow-X product.
- The Instrumentation engineer, who selects the appropriate flow computer model, assigns inputs and outputs and designs transmitter loops and flow computer functionality
- A more generally interested reader, who wonders if the capabilities and features of Flow-X will satisfy his/her project requirements.

This manual expects the reader to be commonly acquainted with flow measurement principles, such as turbine, orifice and ultrasonic measurements. This manual is not an introduction to these techniques.

Overview

This manual works in conjunction with manual IIA 'Operation and Configuration' that covers the **common** operation and configuration aspects of the Flow-X flow computer.

The Flow-X flow computer family comes with the following standard software applications:

Introduction - Abbreviations

- Gas Metric
- Liquid Metric
- Gas US Customary
- Liquid US Customary

This application manual describes the additional functions and capabilities of the Liquid US Customary Application.

In this first chapter, an introduction is given to this manual. Various terms and definitions as used throughout this book are given.

In Chapter 3 - Operation lists the features of this application and shows typical meter run configurations that are covered by it.

Chapter 4 - Configuration describes the configuration settings (i.e. the parameters or constants) that are specific to this application.

Chapter 5 - Maintenance mode describes the maintenance mode function that allows for working on and testing of the flow computer without affecting the custody transfer data.

Chapter 6 - Flow computations, specifies the flow calculations as used by this application.

Chapter 7 - Reports describes the reports that are provided by the standard application.

Chapter 8 - Communication, describes the communications lists that are specific to this application.

Chapter 9 - Historical Data Archives, describes the historical data archives that are defined in the standard application.

Abbreviations

Throughout this document the following abbreviations are used:

ADC	Analog to Digital Converter
AI	Analog Input
AO	Analog Output
API	Application Programming Interface
	An interface that allows an application to interact with another application or operating system, in our case, Flow-X . Most of the Flow-X API is implemented through Excel worksheet functions.
ASCII	American Standard Code for Information Interchange. A set of standard numerical values for printable, control, and special characters used by PCs and most other computers. Other commonly used codes for character sets are ANSI (used by Windows 3.1+), Unicode (used by Windows 95 and Windows NT), and EBCDIC (Extended Binary-Coded Decimal Interchange Code, used by IBM for mainframe computers).

Introduction - Abbreviations

BS&W	Basic (or Bottom) Sediment and Water
	BS&W includes free water, sediment (sand, mud) and emulsion and is measured as a volume percentage is measured from a liquid sample of the production stream.
CPU	Central Processing Unit
DAC	Digital to Analog Converter
DCS	Distributed Control System
DDE	Dynamic Data Exchange
	A relatively old mechanism for exchanging simple data among processes in MS-Windows.
DI	Digital Input
DO	Digital Output
EGU	Engineering Units
EIA	Electrical Industries Association
FET	Field Effect Transistor
GUI	Graphical User Interface
HART	Highway Addressable Remote Transducer.
	A protocol defined by the HART Communication Foundation to exchange information between process control devices such as transmitters and computers using a two-wire 4-20mA signal on which a digital signal is superimposed using Frequency Shift Keying at 1200 bps.
НМІ	Human Machine Interface.
	Also referred to as a GUI or MMI. This is a process that displays graphics and allows people to interface with the control system in graphic form. It may contain trends, alarm summaries, pictures, and animations.
ι/Ο	Input/Output
IEEE	Institute for Electrical and Electronics Engineers
ISO	International Standards Organization
ММІ	Man Machine Interface (see HMI)
MIC	M achine Identification C ode. License code of Flow-X which uniquely identifies you computer.
OEM	Original Equipment Manufacturer
P&ID	Piping and Instrumentation Diagram

Introduction - Abbreviations

PC	Personal Computer
РСВ	Printed Circuit Board
-	
PLC	Programmable Logic Controller.
	A specialized device used to provide high-speed, low-level control of a process. It is programmed using Ladder Logic, or some form of structured language, so that engineers can program it. PLC hardware may have good redundancy and fail-over capabilities.
RS232	EIA standard for point to point serial communications in computer equipment
RS422	EIA standard for two- and four-wire differential unidirectional multi-drop serial
RS485	EIA standard for two-wire differential bidirectional multi-drop serial communications in computer equipment
RTU	Remote Terminal Unit
SCADA	Supervisory Control and Data Acquisition
SQL	Standard Query Language
SVC	Supervisory Computer
TCP/IP	Transmission Control Protocol/Internet Protocol.
	Transmission Control Protocol/Internet Protocol. The control mechanism used by programs that want to speak over the Internet. It was established in 1968 to help remote tasks communicate over the original ARPANET.
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver & Transmitter
URL	Uniform Resource Locator.
	The global address for documents and resources on the World Wide Web.
XML	Extensible Markup Language. A specification for Web
	documents that allows developers to create custom tags
	that enable the definition, transmission, validation and
	interpretation of data contained therein.

Terms and definitions

API gravity	Measure for the density of petroleum liquid. The heavier the liquid the lower the API gravity. The API scale was designed so that most values would fall between 10 and 70 API gravity degrees
Asynchronous	A type of message passing where the sending task does not wait for a reply before continuing processing. If the receiving task cannot take the message immediately, the message often waits on a queue until it can be received.
Client/server	A network architecture in which each computer or process on the network is either a client or a server. Clients rely on servers for resources, such as files, devices, and even processing power. Another type of network architecture is known as a peer-to-peer architecture. Both client/server and peer-to-peer architectures are widely used, and each has unique advantages and disadvantages. Client/server architectures are sometimes called two-tier architectures
Device driver	A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware interface card that receives field device messages and maps their content into a region of memory on the card. The device driver then reads this memory and delivers the contents to the spreadsheet.
Engineering units	Engineering units as used throughout this manual refers in general to the units of a tag, for example 'psi', or ' $^{\circ}F'$, and not to a type of unit, as with 'metric' units, or 'imperial' units.
Ethernet	A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mbps. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software layers. A newer version, called 100-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second.
Event	Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user.
Exception	Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control.
Fieldbus	A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field devices. Fieldbus protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the different fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen.

Throughout this manual the following additional terms and definitions are used:

Introduction - Terms and definitions

Factored density	The density as measured by a densitometer or a gravitometer corrected for DCF (Density Correction Factor). DCF is determined from a calibration.
	It is also called 'Observed density', 'Measured density' or 'Flowing density'.
Flowing density	The density at the flowing conditions of pressure and temperature This is typically the density as measured by a densitometer or a gravitometer. It is also called 'Observed density', 'Measured density' or 'Factored density'. The 'Measured density' is the density of the fluid at the temperature and pressure at the density measurement point, which is therefore not necessarily the same as the density value at the flow meter.
Gross volume	The corrected actual volume; as indicated by the flow meter and corrected for the flow meter calibration curve (if applicable), the meter factor, the meter body expansion and the viscosity influence (for helical turbine and PD meters).
Indicated volume	The uncorrected actual volume; as indicated by the flow meter without any correction being applied.
Kernel	The core of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation.
Measured density	The density as measured a densitometer or a gravitometer. It is also called 'Observed density', 'Flowing density' or 'Factored density'. The 'Measured density' is the density of the fluid at the temperature and pressure at the density measurement point, which is therefore not necessarily the same as the density value at the flow meter.
Meter density	The density at of the fluid at the flow meter conditions of temperature and pressure. The meter density is calculated from the standard density and the Ctl and Cpl factors.
Observed density	The density as observed (measured) by the densitometer or a gravitometer. It is also called 'Flowing density', 'Measured density' or 'Factored density' The 'Observed density' is the density of the fluid at the temperature and pressure at the density measurement point, which is therefore not necessarily the same as the density value at the flow meter.
Peer-to-peer	A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P.

Introduction - Ter	ms and definitions
--------------------	--------------------

Polling	A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster.
Process visualization software	A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to external devices, which are in turn connected to sensors and production machinery.
	The term 'process visualization software' in this document is generally used for software with which SCADA software, HMI software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with eXLerate, Spirit FC's PC- based supervisory software.
Protocol	An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model.
Query	In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.
Real-time	The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-
Relative density	fast. Same as specific gravity. It is the ratio between the density of the liquid relative to the density of water.
Resource	Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.
Specific gravity	Same as relative density. It is the ratio between the density of the liquid relative to the density of water.
Standard density	The density at the reference conditions of temperature and pressure, typically 60 °F and 0 psig. For NGL/LPG products the reference pressure typically is the equilibrium vapor pressure (EVP), which is either typically calculated by GPA TP-15.
Synchronous	A type of message passing where the sending task waits for a reply before continuing processing.

Flow -X Liquid Application Manual for US Customary	
Introduction -	
Тад	A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.
Unfactored density	The uncorrected density as measured by a densitometer or a gravitometer
Web Server	A computer that has server software installed on it and is used to deliver web pages to an intranet/Internet.

Document conventions

1-18

When the book symbol as displayed at the left appears in the text in this manual, a reference is made to another section of this or another manual. At the referred section, more detailed, or other relevant information is given.

When in this manual a symbol as displayed at the left appears in the text, certain specific operating instructions are given to the user. In such as case, the user is assumed to perform some action, such as the selection of a certain object, worksheet, or typing on the keyboard.

A symbol as displayed at the left indicates that the user may read further on the subject in one of the sample workbooks as installed on your machine.

When an important remark is made in the manual requiring special attention, the symbol as displayed to the left appears in the text.

Chapter 2 - Application overview

The Liquid USC application is set up for liquid flow metering stations consisting of one or more parallel meter runs with all values and flow computations in US Customary units.

The application supports batch type of operation as well as continuous operation with hourly and daily custody transfer data.

The application handles meter proving based on a pipe or a compact prover. Single or dual densitometers installed either on a common header or in each meter run separately are supported as well.

For meter stations the meter runs may run independently or with a common density/gravity input and/or product definition.

The following typical meter stations are supported:

- Single meter run
- Two 100 % meter runs (redundant runs) with an optional cross-over valve for master meter proving.
- Meter station with independent meter runs that run different products and an optional single/twin densitometer installed on each run.
- Meter station with multiple meter runs that run one common product and share a common single/twin densitometer.

The application supports any number of meter runs within the meter station. The maximum number of meter runs however is limited by the type of Flow-X flow computer, i.e. a maximum of 4 meter runs applies for a Flow-X/P and 8 meter runs for a Flow-X/R.

Input and output signals

Flow meter input

The Liquid USC application supports one flow meter input per meter run.

The following types of flow meter input are supported:

Pulse input Any flow meter that provides a single or dual pulse output that represents the volumetric or mass quantity.

Typically used for:

- Turbine meters
- PD meters
- Ultrasonic flow meters
- Coriolis flow meters

.. or any volumetric or mass flow meter providing a pulse signal

Chapter 2 - Application overview Input and output signals

Smart input	Any flow meter that provides a Modbus, HART or analog signal that represents the volumetric or mass quantity or rate, where the flow quantity value naturally only applies for Modbus and HART signals. The Instromet Uniform protocol (for ultrasonic flow meters) is supported as well.
	Typically used for: Ultrasonic flow meters Coriolis flow meters
Smart & pulse input	Typically used for ultrasonic and coriolis flow meter that provide both a communications and a pulse output. Either output signal may be selected as the primary. The secondary signal serves as a backup / comparison signal and might be used automatically in case the primary signal should fail.
Orifice	Orifice plates in accordance with AGA-3

Process inputs

A process input is a live signal that is a qualitative measurement of the fluid and can be any of the following kinds:

- Analog input (0-20 mA, 4-20 mA, 0-5 Vdc, 1-5 Vdc)
- Pt100 inputs (only for temperature measurement)
- HART input
- Modbus input
- Fixed value

The following process inputs are part of the USC liquid application:

Meter temperature	Pressure at the flow meter.
	For an orifice flow meter either the temperature at the upstream or downstream tapping or the temperature at the location where the pressure has fully recovered may be used.
Meter pressure	Pressure at the flow meter.
	For an orifice flow meter either the temperature either the pressure at the upstream or downstream tapping or the fully recovered pressure may be used.
Density temperature	Pressure at the point where the density measurement is taken.
	This input is only used when there is a live density / gravity measurement, based on a densitometer input or on a density / gravity process input (e.g. a mA signal).
Density pressure	Pressure at the point where the density / gravity measurement is taken.
	This input is only used when there is a live density / gravity measurement, based on a densitometer input or on the density process input.
Observed density /	The measured density or gravity. The application supports the following units

Chapter 2 - Application overview Input and output signals

gravity	for density / gravity:
	 API gravity Relative density / specific gravity Density [g/cc] [g/cc] is the default unit. Other units, e.g. [lb/bbl] are supported as well
	Must be the density or gravity of the fluid at the density temperature and density pressure.
	Instead of calculating the standard density / gravity from a measured density / gravity the application can also take a direct input signal or a constant for the standard density / gravity.
Standard density /gravity	Density or gravity at the standard conditions of temperature and pressure, typically 60°F and 0 psig.
	Same units as for observed density / gravity are supported
BS&W	Base Sediment and Water input.
	Used for to calculate the net standard volume.
Viscosity	Viscosity input.
	Viscosity value can be used for viscosity correction of the turbine or PD flow meter
Prover inlet and outlet temperature	The application supports separate prover inlet and outlet temperature inputs.
	When only one prover temperature input is used then both inputs can be assigned to the same physical input
Prover inlet and outlet pressure	The application supports separate prover inlet and outlet pressure inputs.
	When only one prover pressure input is used then both inputs can be assigned to the same physical input
Piston rod temperature	Applies for compact provers only.
Piston plenum pressure	Only applies for Brooks (Daniel / Emerson) compact provers.

Other process inputs can be added through user-defined 'Calculations' and spreadsheet logic

Chapter 2 - Application overview Input and output signals

Digital I/O

The application supports the following status inputs and status and control outputs.

Valve control I/O	Open and close command and status signals.
Data validity input	Can be used in case the flow meter provides a status signal that indicates the validity of the flow meter signal. It is typically used by ultrasonic and coriolis flow meters in combination with a pulse signal. The input is used for alarming purposes and to control the accountable totals required for MID approval.
Prove detectors	Up to 4 prove detector signal inputs are available.
4-way valve leakage	Used to detect a metering integrity problem during proving. Prove run will be aborted when the leakage signal is active while the sphere or piston is in the calibrated volume.
	further status inputs and outputs and control outputs can be added through user-defined 'Calculations' and spreadsheet logic

Other digital I/O can be added through user-defined 'Calculations' and spreadsheet logic

Analog outputs

The application supports the following type of analog outputs:

Flow and process values	To output the actual flow rate, density, pressure, temperature
PID control	For flow and pressure control or any other PID application.
	further analog outputs can be added through user-defined 'Calculations' and spreadsheet logic

Other analog outputs can be added through user-defined 'Calculations' and spreadsheet logic

Densitometers

The application supports single and twin liquid densitometers of make Solartron, Sarasota, UGC and Densitrak either on meter run or station level. In case of two densitometers the application uses the primary densitometer for its calculations and switches to the backup densitometer in case the primary densitometer should fail.

Pulse outputs

The application supports the configuration of up to 3 pulse outputs per flow module to drive electro-mechanical counters and samplers. The application provides sophisticated control of both single and twin sampling systems.

Batch operation

The flow computer maintains separate totalizers and averages to support batch operations. The flow computer performs batching either for each meter run individually or for all meter runs at the same time (i.e. at station level). Batches can be ended automatically based on a product interface change, at a daily basis at a specific hour and based on a set of scheduled date and time. A stack of 6 batches can be pre-defined on station level or on meter run level.

The meter ticket of the last 4 previous batches can be recalculated based on a different density or gravity, BS&W and meter factor value.

Proving capability

The application supports the following type of proving:

- Bi-directional sphere prover
- Uni-directional sphere prover
- Brooks (Daniel / Emerson) compact prover
- Calibron compact prover
- Flow MD compact prover

For small volume sphere provers, i.e. with a proved volume of less than 10000 meter pulses as in accordance with API standards, there is the option to apply double chronometry (i.e. pulse interpolation).

The number of prove runs and passes per run are and Repeatability limit can be set either to a fixed value (typically 0.05%) or be determined dynamically in accordance with API MPMS Chapter 4,8 appendix A.

The application supports a common input as well as 2 separate inputs for the start and stop detector switches. Also the usage of a 2nd stop detector is supported, leading to 2 calibrated volumes, one for smaller and one for larger meters. Finally a 2nd start detector may be connected as well providing 4 separate calibrated prover volumes in total.

Repeatability checks are performed on pulse count or meter factor. Either a fixed or a dynamic repeatability limit can be applied to determine when the required number of successful runs has been reached. The dynamic limit is in accordance with the method described in API 4.8 appendix A,

Control features

The application supports control of single and twin can **samplers**. Several flow and time proportional methods are provided. Sampler control is started and stopped automatically. Can fill levels are either calculated from the actual grab counts or indicated by an analog input signal.

Chapter 2 - Application overview Control features

By default one sampler can be controlled. Additional samplers can be easily defined in Flow-Xpress Professional.

The application provides control of meter run inlet and outlet **valves**, run to prover valves, the prover 4-way valve and the prover outlet valve.

Additional valves and **valve sequencing** logic can be defined in FlowXpress through additional *Calculations*. Well-documented examples are provided in application file 'Calculation Examples.xls'.

PID control is provided as well. By default the application supports a flow control valve with optional secondary pressure control for each run and for the prover. In FlowXpress Professional sophisticated PID logic including cascading can be defined. Examples are provided in application file 'PID Control.xls'.

Chapter 3 - Operation Meter K-factor

Chapter 3 -

Operation

This chapter describes the operational features of the flow computer that are specific for the Liquid USC application. General operational functions such as report printing and alarm acknowledgement are described in manual IIA 'Operation and Configuration'.

For the description of the operation of the LCD display, the touch screen (Flow-X/P) and the web interface, please refer to manual IIA 'Operation and Configuration'.

Meter K-factor

Only available when Meter device type is 'Pulse input' or 'Smart / pulse'

To convert meter pulses in metered volume a meter K-factor is used. The meter K-factor value can be defined in two ways, either as a nominal meter K-factor value that is applied for all flow rates or as a calibration curve, where a number of calibrated K-factors is defined a function of the actual pulse frequency.

Display \rightarrow Flow meter, Run <x>, Meter K-factor

With <x> the module number of the meter run

Name	Security Ievel	Description	
Forward / reverse nominal K- factor	1000	The number of pulses per barrel [pls/bbl] or per pound [pls/lbm]. Separate values are used for forward flow and reverse flow.	
K-factor curve	1000	Controls whether the nominal K-factor or the calibration curve is used.	
cuive		0: Disabled Nominal K-factor is used 1: Enabled Calibration curve is used	
		Separate curves are used for forward flow and reverse flow.	
Extrapolation allowed	1000	Controls if extrapolation is allowed when the pulse frequency is outside the calibration curve	
		0: No When the pulse frequency is below the first calibration point or above the last calibration point, then respectively the first or the last calibration K-factor will remain in-use.	
		1: Yes The interpolation is extrapolated when the pulse frequency is outside the calibrated range.	

Flow -X Liquid USC Application Manual

Chapter 3 - Operation Meter factor

Point x – Frequency	1000	Pulse frequency [Hz] of the calibration point
Point x – K-factor	1000	Meter K-factor of the calibration point, wither the number of pulses per barrel [pls/bbl] or per pound [pls/lbm]

- Pulse frequency must be in ascending order
- Up to 12 points can be defined. For unused points, leave the pulse frequency to 0. E.g. when the curve has 6 points, the pulse frequency of points 7 through 12 should be set to 0.

Meter factor

Only available when Meter device type is 'Pulse input' or 'Smart / pulse'

Optionally a meter factor can be used to correct the metered volume as indicated by the flow meter. Either a single nominal meter factor can be used or a meter factor curve that contains a number of calibrated meter factors as a function of flow rate.

Nominal meter factors and meter factors are product-dependent. For each of he up to 16 products a different nominal meter factor or meter factor curve is applied.

By default a nominal meter factor of 1 is used, so effectively disabling the correction.

With <x> the module number of the meter run

Display \rightarrow Flow meter, Run <x>, Meter factor

Meter Factor Curve	1000	Controls whether the nominal meter factor or the calibration curve is used.	
		0: DisabledNominal value is used (defined in section 'Product')1: EnabledCalibration curve is used.	
		Separate curves are used for forward flow and reverse flow.	
Extrapolation Allowed	1000	Only applies when 'Meter Factor Curve' is enabled.	
		Controls if extrapolation is allowed when the flow rate is outside the Meter Factor Curve	
		0: No When the flow rate is below the first calibration point or above the last calibration point, then respectively the first or the last calibration error will remain in-use.	
		1: Yes	

Chapter 3 - Operation Temperature

The interpolation is extrapolated when the pulse frequency is outside the calibrated range.

Product #116 Nominal Meter Factor	1000	The nominal meter factor used for the entire flow range for the 16 different products. This value will be used when 'Meter Factor Curve' is disabled.
Product #116 Point #112 - Flow rate	1000	Flow rate [unit/h} at the calibration point 1 through 12 for the 16 different products
Point #112 - Meter factor	1000	Meter factor at the calibration point 1 through 12 for the 16 different products.

- Flow rate must be in ascending order
- Up to 12 points can be defined. For unused points, leave the flow rate to 0. E.g. when the curve has 6 points, the pulse frequency of points 7 through 12 should be set to 0.

Temperature

Two temperature inputs are used at meter run level, the meter temperature and, in case of a live density / gravity measurement at meter run level, the density temperature (i.e. the temperature at the point where the density or gravity is measured).

In case of a live density / gravity measurement at station level, the density temperature is available as station level as well.

 $Display \rightarrow Temperature$

Depending on the actual configuration settings are available for the following temperature inputs:

- <Run>, Meter temperature
- <Run>, Density temperature
- Station, Density temperature
- Prover, Prover inlet temperature
- Prover, Prover outlet temperature
- Prover, Prover rod temperature

The following operational settings are available for each applicable temperature variable

Override 500 Temperature override selection

0: Disabled Input value is used for the calculations

1: Enabled Override value is used for the calculations

Flow -X Liquid USC Application Manual

Chapter 3 - Operation Pressure

Override	500	Temperature override value [°F]
Lo lo limit	500	Limit for the temperature low low alarm [°F]
Lo limit	500	Limit for the temperature low alarm [°F]
Hi limit	500	Limit for the temperature high alarm [°F]
Hi hi limit	500	Limit for the temperature high high alarm [°F]
ROC limit	500	Limit for the temperature rate of change alarm [°F/sec]

Pressure

Two pressure inputs are used at meter run level, the meter pressure and, in case of a live density / gravity measurement at meter run level, the density pressure (i.e. the pressure at the point where the density or gravity is measured).

In case of a live density / gravity measurement at station level, the density pressure is available as station level as well.

$\textit{Display} \rightarrow \textit{Pressure}$

Depending on the actual configuration settings are available for the following pressure inputs:

- <Run>, Meter pressure
- <Run>, Density pressure
- Station, Density pressure
- Prover, Prover inlet pressure
- Prover, Prover outlet pressure
- Prover, Prover plenum pressure (only applies for a Brooks compact prover)

The following operational settings are available for each applicable pressure variable

Override	500	Pressure override selection	
		0: DisabledInput value is used for the calculations1: EnabledOverride value is used for the calculation	ons
Override	500	Pressure override value [psig]	
Lo lo limit	500	Limit for the pressure low low alarm [psig]	
Lo limit	500	Limit for the pressure low alarm [psig]	
Hi limit	500	Limit for the pressure high alarm [psig]	
Hi hi limit	500	Limit for the pressure high high alarm [psig]	
ROC limit	500	Limit for the pressure rate of change alarm [psi/sec]	

Chapter 3 - Operation Density

Density

Display \rightarrow Density

Depending on the configuration density settings are either on meter run or station level.

Observed & Standard density / gravity

Inputs units	1000	(*) The engineering unit used for the observed and standard density is as indicated on the display and is one of the following (depending on the configuration):	
		Relative density API gravity Density [g/cc]	
Override	500	Density override selection	
		0: DisabledInput value is used for the calculations1: EnabledOverride value is used for the calculations	
Override	500	Density/gravity override value (*)	
Lo lo limit	500	Limit for the density/gravity low low alarm (*)	
Lo limit	500	Limit for the density/gravity low alarm (*)	
Hi limit	500	Limit for the density/gravity high alarm (*)	
Hi hi limit	500	Limit for the density/gravity high high alarm (*)	
ROC limit	500	Limit for the density/gravity rate of change alarm [(*)/sec]	

Single densitometer

These settings are only available when density input type is set to 'Single densitometer'.

The time period inputs of the densitometer can be manually overridden. This feature is meant for test purposes only. It requires security level 1000 ('Engineer')

Override	1000	Time period i	nput override selection
		0: Disabled	Input value is used for the calculations

Chapter 3 - Operation Density

		1: Enabled Override value is used for the calculations
Override	1000	Time period input override value [microseconds]
Lo lo limit	1000	Limit for the time period input low low alarm [microseconds]
Lo limit	1000	Limit for the time period input low alarm [microseconds]
Hi limit	1000	Limit for the time period input high alarm [microseconds]
Hi hi limit	1000	Limit for the time period input high high alarm [microseconds]
ROC limit	1000	Limit for the time period input rate of change alarm [microseconds /sec]

Dual densitometer

These settings are only available when density input type is set to Dual densitometer'.

The time period inputs of the dual densitometers can be manually overridden. This feature is meant for test purposes only. It requires security level 1000 ('Engineer')

Densitometer select mode	1000	 Densitometer selection mode. 1: Auto-A Densitometer B only used when densitometer A fails and densitometer B is healthy. Densitometer A is used in all other cases. 	
		2: Auto-B Densitometer A is only used when densitometer B fails and densitometer A is healthy. Densitometer B is used in all other cases.	
		3: Manual-A Always use densitometer A irrespective of its failure status	
		4: Manual-B Always use densitometer B irrespective of its failure status	
Time Period A/B Override	1000	Time period input override selection	
		0: Disabled Input value is used for the calculations1: Enabled Override value is used for the calculations	
Time Period A/B Override	1000	Time period input override value [microseconds]	
Time Period A/B lo lo limit	1000	Limit for the time period input low low alarm [microseconds]	

Chapter 3 - Operation Product

Time Period A/B lo limit	1000	Limit for the time period input low alarm [microseconds]
Time Period A/B hi limit	1000	Limit for the time period input high alarm [microseconds]
Time Period A/B hi hi limit	1000	Limit for the time period input high high alarm [microseconds]
Time Period A/B ROC limit	1000	Limit for the time period input rate of change alarm [microseconds /sec]

Product

This display shows the current product values.

Products are defined in the product stack: display 'Configuration\(Run <x>) Products' or 'Configuration Station Products'

The actual product in-use is defined in the batch stack: display 'Batch\(Run <x>)\Batch stack' or 'Batch\Station\Batch stack'

Batching

Displays to end a batch, define the batch stack, recalculate a previous batch and view the current and previous batch data.

The batch stack may automatically be shifted upwards at each batch end, so allowing up to 6 batches to be pre-programmed in the flow computer.

Ending the current batch

Display \rightarrow Batching, Run <x>, Batch control

 $\textit{Display} \rightarrow \textit{Batching, Station, Batch control}$

With <x> the module number of the meter run

Batch end command	500	Ends the current batch.
		Command may be disabled depending o actual status (e.g. flow rate > 0) and system settings (e.g. batch end only allowed when current batch has a batch volume > 0).
Batch official	500	Mark the batch as official or unofficial. This is shown on the meter ticket (Saudi Aramco reports only)

Chapter 3 - Operation Batching

Defining the batch stack

A stack of up to 6 batches can be defined either on meter run or on station level.

Display \rightarrow Batching, Run <x>, Batch stack Display \rightarrow Batching, Station, Batch stack

With <x> the module number of the meter run

Batch ID	500	The alpha-numeric identification of the batch
Product nr.	500	The product number [116] of the batch
Batch size	500	The target batch size expressed in standard volume [bbl].
Delete seq. #	500	Deletes the entered batch from the batch stack
Insert before seq. #	500	Insert a batch before the entered batch. Deletes the last batch from the batch stack

Recalculate a previous batch

Up to the last 4 previous can be recalculated based on modified input data. Recalculations can be repeated with the number of recalculations indicated on top of the recalculated meter ticket.

Display \rightarrow Batching, Run <x>, Batch recalculation</x>		
Display \rightarrow Batching, Station, Batch recalculation		
With <x> the module number of the meter run</x>		
Note: through	the LCD dis	splay only numbers can be entered.
Selected previous	500	The selected previous batch
batch		1: Previous batch 2: 2nd latest batch 3: 3rd latest batch 4: 4th latest batch
Recalculate & print	500	Recalculates and generates the recalculated meter ticket based on the entered recalculation input data
Fwd/rev recalc. batch	500	New standard density [g/cc] to be used for the recalculation of the forward / reverse batch totalizers

Chapter 3 - Operation Proving

standard density		
Fwd/rev recalc. batch standard API	500	New meter factor to be used for the recalculation of the forward / reverse batch totalizers
Fwd/rev recalc. batch standard RD / SG	500	New relative density / specific gravity to be used for the recalculation of the forward / reverse batch totalizers
Fwd/rev recalc. batch meter factor	500	New meter factor to be used for the recalculation of the forward / reverse batch totalizers
Fwd/rev recalc. batch BS&W	500	New BS&W value to be used for the recalculation of the forward / reverse batch totalizers

Proving

Displays to view the status of the current and previous prove sequence can be accessed through option "Proving" from the main menu.

The following settings / commands related to proving can be entered.

 $Display \rightarrow Proving \rightarrow Proving operation$

Meter to be proved	500	Number of the meter to be proved. Number corresponds to physical position of the related flow module in the flow computer.
Start prove sequence	500	Starts a prove sequence for the meter to be proved. The new meter factor will be activated automatically, provided that the prove sequence finishes successfully, the new meter factor passes all the test criteria and automatic meter factor acceptance is enabled.
Selected prover volume	1000	Selects the in-use prover base volume (i.e, the pair of detectors used for proving).
		Only applies for 3 or 4 detector inputs. For 1 or 2 inputs 'Volume 1 (A-C)' will be used automatically. Reset to 'Volume 1 (A-C) when he selection is invalid
Start trial prove	500	Starts a trial prove sequence for the meter to be proved. A trial prove is the same as a normal prove except that the new meter factor will not be activated, independent of any settings.

Flow -X Liquid USC Application Manual

		-	
<i>Chapter</i> 3 - Operation Sampling			
Abort prove sequence	500	Aborts the current prove sequence in progress	
Accept new meter factor?	500	Activates the new meter factor as the in-use meter factor, provided that:	
		 A normal prove sequence has been started (no trial) The prove sequence has completed successfully The new meter factor has passed all test criteria The meter factor is not already accepted automatically The acceptance time-out period has not elapsed yet 	
Reject new meter factor?	500	Rejects the new meter factor. Also disables the 'Accept new meter factor' option for the current prove.	

Sampling

By default the application supports one sampler only. Additional samplers can be added by copying the logic and displays (requires the Flow-Xpress Professional license).

The following sampling modes are provided:

- Single can
- Twin can
- Multiple cans for up to 4 different products

Both the flow-proportional and time-proportional method are supported. The flow-proportional method can be based on a fixed volume between grabs value or on an estimated total volume to be sampled. Time-proportional sampling can be based on fixed time between grabs value, an estimated (batch) end time or a time period.

The amount of grabs in the sampler reservoir is limited by a configurable limit. A 'Grabs lost' alarm is generated when the limit is reached. Another limit value (configurable) is used to generate an 'Overspeed alarm' when more pulses are generated than the sampler can handle.

The can fill indication can be based on the actual grab count, a digital input (indicating the can full state) or an analog input. The sampler may be stopped automatically when the can is full or when there is no flow. Automatic can switchover is also supported. Operator commands are available to start, stop and reset. Stopping the sampler will effectively pause the generation of pulses, stop the flow accumulation and clear the pulse reservoir.

The 'Reset sampler' command, which implies the stop command, resets the accumulated number of grab in the cans and also the total sampled volume to 0. There is also a manual command to reset the number of grabs for either can. Displays to control and monitor the sampler can be accessed through option "Sampling" from the main menu.

Chapter 3 - Operation Valve control

$Display \rightarrow Sampling$		
Start sampler	500	Starts the outputting of pulses to the sampler based on the configured sampling method
Stop sampler	500	Pauses the generation of pulses, stops the accumulation of flow in the 'Total sampled volume' and clears the pulse reservoir (in case of an overspeed condition pulses are stored in reservoir).
Reset sampler	500	Same as the 'Stop sampler' command and also resets the accumulated number of grabs in the can as well as the 'Total sampled volume' to 0.
Volume between grabs	500	Sets the 'Volume between grabs' value. A grab is issued every time the required volume has been accumulated. Only used when sampling method is 'Flow (fixed value)'.
Selected can	500	Switches control to the other can
Can 1 / 2	500	Enables / disables can 1 / can 2
Reset can 1 / 2	500	Resets the number of grabs in the can to 0. Command is not used when 'Can fill indication method is set to 'Analog'.

Valve control

By default the application supports control of the 'run inlet', 'run outlet' and 'run to prover' valves for each meter run and of the prover 4-way and prover outlet valves. Additional valves may be added through user-defined 'Calculations'.

 $\textit{Display} \rightarrow \textit{Valve control}$

The following settings and commands are available for each valve

Auto/manual mode	500	Toggles the valve between automatic and manual mode of operation. The automatic mode of operation is meant for systems where valve sequencing is applied, either through the flow computer itself or by an external device (e.g. the DCS or the supervisory computer).
Manual open command	500	Issues the command to open the valve. Only used when the valve operates in manual mode.
Manual close command	500	Issues the command to close the valve. Only used when the valve operates in manual mode.

3-36

Chapter 3 - Operation Flow control

Flow control

By default the application supports control of a Flow Control Valve for each meter run and for the prover Additional PID control loops be added on worksheets (requires the Flow-Xpress Professional license).

Display \rightarrow Flow control

The following settings and commands are available for each FCV.

Setpoint value	1000	The control loop will try to achieve the setpoint value provided that current control mode is 'Flow' (and not 'Pressure') and 'Manual mode' is disabled.
		Same units as the controlled flow rate.
Manual control mode	1000	When this input is enabled the control output %' is set equal to 'Manual output %
		When this input is disabled the PID algorithm is applied based on the actual setpoint value
Manual control output	1000	The control output % will be set this value when 'Manual mode' is enabled

Chapter 3 - Operation Flow control

This page is left blank intentionally.

Chapter 4 - Configuration Introduction

Chapter 4 -

Configuration

This chapter describes the configuration items of the flow computer that are specific for the Liquid USC application.

Introduction

The configuration procedure for any Flow-X flow computer is described in manual IIA- Operation and Configuration.

The procedure basically consists of the following steps:

- Setting up the flow computer device
- Configuring the HART and communications devices
- Defining the configuration settings
- Defining the reports and printers
- Defining the communication lists.

All the steps are described in manual IIA.

Manual IIA describes how to use the user interface to access the configuration settings. The actual settings however are dependent on the actual application. This chapter describes all the settings that are part the Liquid USC application in a sequence that is logical from a configuration point of view.

Setting up the I/O

A logical first step in the configuration process is to define the physical I/O points that involve all the transmitters, controllers and devices that are or will be physically wired to the I/O terminals of the flow computer.

Each Flow-X/M flow module has the following amount of I/O.

- 6 analog inputs
- 2 PRT inputs
- 4 analog outputs
- 16 digital I/O

Note : a Flow-X/P4 has 4 times this amount of IO.

The total number of pulse inputs, time period inputs, status inputs, pulse outputs and status outputs is 16.

The I/O points can later on be assigned to the related station and meter run variables.

Analog inputs

Display \rightarrow Configuration, <Module IO <x.>, Analog inputs, Analog input <y>

with <x> the number of the module to which the input is physically connected and <y> the relative input number

Each flow module has 6 analog inputs. For each analog input the following settings are available.

Tag	1000	Alphanumeric string representing the tag name of the transmitter, e.g. "PT-1001A". Only used for display and reporting purposes.
Input type	1000	Type of input signal
		1= 4-20 mA 2= 0-20 mA 3= 1-5 Vdc 4= 0-5 Vdc
Averaging	1000	The method to average the individual samples within every calculation cycle.
		15 samples per second are taken, so with a cycle time of 250 ms 3 to 4 samples are available per cycle.
		1= Arithmetic mean 2= Root mean square
		Enter '2: Root Mean Square' for differential pressure flow transmitters. Enter '1: Arithmetic Mean' for other transmitters
Zero scale	1000	The value in engineering units that corresponds with the zero scale value.
		E.g. for a 4-20 mA temperature transmitter with a range of -30+80 deg. C the value -30 should be entered
Full scale	1000	The value in engineering units that corresponds with the full scale value.
		E.g. for a 4-20 mA temperature transmitter with a range of -30+80 (deg. C) the value 80 should be entered

RTD inputs

Display \rightarrow Configuration, <Module IO <x.>, PRT inputs, PRT input <y>

with <x> the number of the module to which the input is physically connected and <y> the relative input number

Each flow module has 2 PRT inputs that can be connected to a Pt100 element. For each PRT input the following settings are available.

Тад	1000	Alphanumeric string representing the tag name of the transmitter,
		e.g. "PT-1001A". Only used for display and reporting purposes.

Input type 1000 Type of Pt100 element

1: European (most commonly used) Alpha coefficient 0.00385 Ω/Ω /°C As per DIN 43760, BS1905,IEC751 Range - 200..+850 °C

2: American

Alpha coefficient 0.00392 Ω/ Ω /°C Range - 100..+457 °C

Analog outputs

Display \rightarrow Configuration, <Module IO <x.>, Analog outputs, Analog output <y> with <x> the number of the module to which the output is physically connected and <y> the relative output

number Each flow module has 4 analog outputs. For each analog output the following settings are available.

Tag	1000	Alphanumeric string representing the tag name of the output signal, e.g. "AO-045". Only used for display and reporting purposes.
Dampening factor	1000	Filtering level [08]. Can be used to obtain a smooth output signal. The value represents the number of calculation cycles * 8 that are required to get to the new setpoint.
		0: No filtering

1: It takes 8 calculation cycles to get to the new setpoint 2: It takes 16 calculation cycles to get to the new setpoint etc.

For example: following filtering is used when setpoint is set to 1.

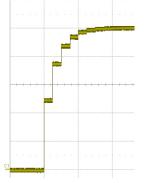


Figure 1: Analog output dampening factor

4-41

Digital IO assignments

Each flow module provides 16 multi-purpose digital channels that can be assigned to any type of input or output.

Тад	1000	Alphanumeric string represer display and reporting purpose	nting the tag name of the transmitter, e.g. "MOV-34010". s.
Signal type	1000	Assigns the digital signal to a s	pecific purpose
		0 = Not used 1 = Digital input 2 = Digital output 3 = Pulse input A 4 = Pulse input B 5 = Time period input 1 6 = Time period input 2 7 = Time period input 3 8 = Time period input 4 9 = Pulse output 1 10 = Pulse output 2 11 = Pulse output 3 12 = Pulse output 4 13= Common/start det. (A) 14= 2nd start detector (B) 15= Stop Detector (C) 16= 2nd stop Detector (D) 17= Prover bus A 18 =Prover bus B	e.g. status input e.g. status output, control output single pulse / channel A of dual pulse channel B of dual pulse) for densitometers and SG transducers to drive an E/M counter or a sampler prover detector switch A; common detector input or 1st sta 2nd start detector B 1st stop detector C 2nd stop detector D (meter pulse A output to separate prover computer) (meter pulse B output, not used normally)

Digital IO settings

Additional settings for the 16 digital channels

Polarity	1000	1: Normal 2: Inverted
		Refer to setting 'Input latch mode' for more details.
Threshold level	1000	Each digital channel has 2 threshold levels, which are as follows (all relative to signal ground):
		Channels 1 through 8: 1: + 1.25 Volts 2: + 12 Volts
		Channels 9 through 16: 1: + 3.75 Volts 2: + 12 Volts
Input latch mode	1000	Only applies when signal type is 'Digital output'
mode		1: Actual 2: Latched

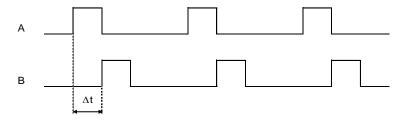
Chapter 4 - Configuration	n Setting up the I/O
---------------------------	----------------------

		Polarity = Positive & Input latch mode = Actual then digital input is	
		0:OFF when signal is currently below threshold 1:ON when signal is currently above threshold	
		Polarity = Positive & Input latch mode = Latched then digital input is0:OFFwhen signal has not been above threshold1:ONwhen signal is or has been above thresholdin the last calculation cycle	
		Polarity = Negative & Input latch mode = Actual then digital input is0:OFFwhen signal is currently above threshold1:ONwhen signal is currently below threshold	
		Polarity = NegativeInput latch mode = Latchedthen digital input is0:OFFwhen signal has not been below threshold1:ONwhen signal is or has been below thresholdin the last calculation cycle	
Output min. activation time	1000	Only applies when signal type is 'Digital output'	
		Minimum period of time that the signal will remain activated.	
		After the minimum activation time has elapsed the output signal will remain activated until the control value becomes 0.	
Output delay time	1000	Only applies when signal type is 'Digital output'	
		Period of time that the control signal must be high (> 0) without interruption before the output will be activated.	
		If the control signal becomes 0 before the time has elapsed, then the output signal will not be activated	
		The value 0 disables the delay function	

Pulse input

As for any digital signal a pulse input has a threshold level (Volts) that determines whether the actual signal is considered as on or off.

The actual threshold level is defined on display 'Digital IO settings'.


Meant for a flow meter that provides a single or a dual pulse output signal. Each flow module supports either 1 single or 1 dual pulse input.

A dual pulse signal is a set of two pulse signals ('pulse trains') A and B that originate from the same flow meter. The two pulse trains are similar but shifted in phase (typically 90°).

The primary purpose of the dual signal is to allow for **pulse integrity checking**. Added or missing pulses on either pulse train are detected and corrected for and simultaneous noise pulses are rejected.

The function provides detailed information on the raw, corrected and bad pulses for both channels and for both the forward and reverse flow direction.

The phase shifted pulse train signal also allows for automatic detection of <u>flow direction</u>. Each A pulse is followed by a B pulse within a time period (Δ t) in case the flow runs in the forward direction. In case the flow runs in the reverse direction, the opposite is the case, i.e. each B pulse is followed by an A pulse within the same time period Δ t.

Channel B lags channel A

Figure 2: Flow direction from dual pulse signal

There is also the option to conditionally output the raw pulse signal, which is useful in case a separate flow computer is used for proving purposes. The proving flow computer takes the pulse output from the flow computer that processes the meter on prove to perform prove measurements including double chronometry if required. The prover output signal is generated at 10 MHz, the same frequency at which the raw pulse input signals are sampled.

The Flow/X series of flow computers provides **Level A** pulse_security as defined in ISO 6551, which means that bad pulses are not only detected (level B) but also corrected for.

Pulse correction is optional so both level A and B pulse fidelity checking are supported.

Display \rightarrow Configuration, <Module IO <x.>, Pulse input

with <x> the number of the module to which the input is physically connected

Each flow module has 1 pulse input, which may be either a single or a dual type of signal. The following settings are available for the pulse input of each flow module.

Error pulses limit	1000	When the number of error pulses reaches this limit, then a corresponding alarm will be raised.
		The value 0 disables this limit check
		Not used for a single pulse input (channel B = 0).
Good pulses reset limit	1000	When the number of consecutive good pulses (so without any error pulse) exceeds this limit then the number of error pulses will automatically be reset to 0.
		The value 0 disables this reset function
		Not used for a single pulse input (channel B = 0)

Chapter 4 - Configuration Setting up the I/O

Error rate limit	1000	When the absolute difference in the pulse frequency between channel A and B exceeds this limit, then a corresponding alarm will be raised.
		The value 0 disables this limit check
		Not used for a single pulse input (channel B = 0)
Proving output A	1000	Enables proving output A. Meant for systems using a common prover bus to a separate prover flow computer.
		The flow module will output the raw pulse signal A directly to the defined output channel. Channel is assigned on display 'Digital IO assignments
Proving output B	1000	Enables proving output B. Normally not used, because only meter pulse A is used for proving.

Time period inputs

As for any digital signal a pulse input has a threshold level (Volts) that determines whether the actual signal is considered as on or off.

The actual threshold level is defined on display 'Digital IO settings'.

Display \rightarrow Configuration, <Module IO <x.>, Time period inputs, Time period input <y>

with <x> the number of the module to which the input is physically connected and <y> the relative input number

Each flow module has 4 time period inputs, which can be used for densitometer and specific gravity transducer inputs.

For each time period input the following settings are available.

limit What that con Foll- with	Maximum allowable difference in microseconds. When the time period between two consecutive pulses differs more than this limit from the previous time period, the reading is considered to be abnormal. Following an abnormal reading there must be 3 consecutive readings within the limit before the time period value is considered normal again.	
		When no 3 consecutive readings within the limit are available in the last 5 readings then the input signal is considered to be invalid. Resolution of the limit value is 100 nanoseconds

Pulse outputs

Pulse outputs can be used to feed pulses to an electro-mechanical (E/M) counter or to control a sampling system.

Chapter 4 - Configuration Forcing I/O

A reservoir is used to accumulate the pulses. Pulses are taken from the reservoir and fed to the output at a rate that will not exceed the specified output rate

Display \rightarrow Configuration, <Module IO <x.>, Pulse outputs, Pulse output <y>

with <x> the number of the module to which the output is physically connected and <y> the relative output number

Each flow module has 3 pulse outputs. For each pulse output the following settings are available.

Max outp rate	Maximum frequency at which pulses will be generated. This option is to protect electro-mechanical counters and samplers from overspeeding. Default value 5 Hz.
Reservoir limit	Maximum number of pulses in the reservoir. An alarm will be generated when the limit is reached.

Forcing I/O

For testing purposes all inputs and outputs can be forced to a defined value or state. This option is available at the highest security option only.

Display → IO, Force IO

Overall setup

The overall settings relate the flow computer device itself and to settings that are common for all meter runs.

Overall setup

Display \rightarrow Configuration, Overall setup, Overall setup

Prover type	1000	The type of pro	over connected to the flow computer
		0: None 1: Bi-direction 2: Uni-directio 3: Calibron / Fl 4: Brooks com 5: Master met	nal ball low MD compact pact
Station totals and rates	1000	-	hether or not the flow computer maintains station totals, tes and station averages.
		0: Disabled 1: Enabled	No station values are maintained Station totals, rates and averages are maintained

Chapter 4 - Configuration Overall setup

Common product / batch	1000	Defines if a common product setup is used for all meter runs or if each meter run uses its own product setup.
butch		0: Disabled Each meter run has a separate product setup1: Enabled A common product setup is used for all meter runs
Common dens/grav	1000	Defines if a common density / gravity input (e.g. densitometer) is used for all meter runs or if each meter run uses its own density input.
input		0: DisabledEach meter run has a separate density / gravity input1: EnabledA common density / gravity input is used for all runs
Common BS&W input	1000	When enabled a common BS&W input is used for all meter runs, else a separate BS&W input is used for each meter run.
Common viscosity input	1000	When enabled a common viscosity input is used for all meter runs, else a separate viscosity input is used for each meter run.
Reverse totals	1000	Determines whether reverse totals are enabled or not. 0: Disabled: only forward totals 1: Enabled: forward and reverse totals
Flow- weighted averaging method	1000	Determines the weigh factor for all Flow-Weighted Averages. 1: Volume 2: Mass
Atmospheric pressure	1000	The local atmospheric pressure[psia] is used to convert gauge pressure to absolute pressure and vice versa.
Weight of water	1000	The weight of water [lb/bbl] is used to calculate the specific gravity / relative density.
Disable totals if meter is inactive	1000	Controls if totals should be disabled when the meter is inactive (i.e. flow / dP is below cut-off limit).
mactive		0: No 1: Yes
Disable limit alarms if meter is	1000	Controls if limit alarms should be suppressed when the meter is inactive (i.e. flow / dP is below cut-off limit).
inactive		0: No 1: Yes
Disable limit alarms in maintenance	1000	Controls if limit alarms should be suppressed when the meter is put in maintenance mode.
mode		0: No 1: Yes

Chapter 4 - Configuration Overall setup

Set flow rate 0 if meter is inactive	1000	Controls if the flow rates should be set to 0 when the meter is inactive. 0: No 1: Yes
Allow batch end if meter active	1000	Controls if it is allowed to end a batch when the meter is active (i.e. flow rate >= flow cut-off limit). Note: this option avoids that running batches are ended before the flow has stopped
Allow batch end if total 0	1000	Controls if it is allowed to end a batch when the current batch total is 0, so when there was no flow since the previous batch end.
		Note: this option avoids 'empty' meter tickets are generated.
Force period end at batch end	1000	When enabled the hourly and daily totals are ended at each batch end.
Standard density / gravity API rounding	1000	0: No The calculation of the standard density, or standard API gravity or standard relative density / specific gravity is performed with full precision .
		1: Yes The calculation of the standard density, or standard API gravity or standard relative density / specific gravity is performed in accordance with the selected API standard, including all rounding and truncating rules .
Correction factors API rounding	1000	0: No The calculation of the Ctl (VCF), Cpl and Ctpl factors for the meter tickets is performed with full precision .
		1: Yes The calculation of the Ctl (VCF), compressibility factor F, Cpl and Ctpl factors for the meter tickets is performed in accordance with the selected API standard, including all rounding and truncating rules .
Ctl decimal	1000	Defines the number of decimal places for Ctl.
places		Note that when API rounding is enabled, the Ctl factor will already be rounded to the number of decimal places required by the selected PAI standard.
Ctl decimal	1000	Defines the number of decimal places for Ctl.
places		Note that when API rounding is enabled, the Ctl factor will already be rounded to the number of decimal places required by the selected PAI standard.

Chapter 4 - Configuration Overall setup

Cpl decimal places	1000	Defines the number of decimal places for Cpl.
proces		Note that when API rounding is enabled, the Cpl factor will already be rounded to the number of decimal places required by the selected PAI standard.
Ctpl decimal places	1000	Ctpl is calculated from the rounded Ctl and rounded Cpl.
places		The resulting value will be rounded to the specified number of decimal places.
Date format	1000	Date format to be used on displays and reports
		1: mm/dd/yy 2: dd/mm/yy
Report type	1000	Switches between generic reports and Saudi Aramco type reports

Period settings

The application provides custody transfer data for 4 different periods, the hourly period, the daily period and 2 freely definable periods A and B.

The start of the daily period is configurable. Periods A and B can be used for any period type and any period start, e.g. a 2 weekly period starting at Tuesday 06:00 or a 2nd fiscal day starting at 08:00.. The flow computer maintains the same totals and averages for the user-definable periods as for the hourly and daily periods.

m Sut	
THE P	

Display \rightarrow Configuration, Overall setup, Periods

Day hour	start	1000	Hour if the day that the daily period starts, e.g. '6' for 6:AM or '18' for 6:PM.
Period type	<x></x>	1000	Type of period
			1: Second 2: Minute 3: Hour 4: Day 5: Week 6: Month 7: Quarter 8: Year
Period duratio	<x></x>	1000	Period duration, i.e. number of period types.
			E.g. for a 2 weekly period, enter a 2.
Period days	offset	1000	Period offset from start of year ('January 1') expressed in number of days, e.g. 10 means 'January 11
Period	offset	1000	Period offset from midnight in number of hours. e.g. 6 means 6:AM

hours

Period offset	1000	Period offset from the whole hour in number of minutes, e.g. 30 means
minutes		30 minutes after the hour

Totalizer settings

Display ightarrow Configuration, Overall setup, Totals

Volume total decimal places	1000	The number of decimal places for the indicated and gross volume cumulative totals.
Mass decimal places	1000	The number of decimal places for the mass cumulative totals.
Volume total rollover value	1000	The rollover value for the indicated and gross volume cumulative totals.
Mass total rollover value	1000	The rollover value for the mass cumulative totals.

Display levels

Only the following displays are shown when no user has logged in to the flow computer.

- Live Data Shows the actual in-use process values and flow rates.
- Alarms
- Audit Trail

All other displays have a minimum security level that needs to be activated (by a log-in) before the displays are shown and therefore accessible.

The following settings define the minimum security level required to access the associated displays. The displays will be hidden when the active security level is below the setting.

Display ightarrow Configuration, Overall setup, Totals

Detailed data display level	5000	Minimum security level for all displays that contain detailed information
Batch control display level	5000	Minimum security level for batch control display on which the batch can be ended manually.
Sampler control	5000	Minimum security level to access the display on which the sampler can

Chapter 4 - Configurati	on Overa	all setup
display level		be controlled.
Batch control display level	5000	Minimum security level for batch control display on which te batch can be ended manually.
Proving display level	5000	Minimum security level for the proving displays
Valve control display level	5000	Minimum security level for the controlling the motor-operated valves
Flow control display level	5000	Minimum security level for controlling the flow control valves
Product display level	5000	Minimum security level for defining the 16 products
Reports display level	5000	Minimum security level for generating and reviewing the reports
IO calibration display level	5000	Minimum security level for accessing the displays to calibrate the analog IO
Configuration display level	5000	Minimum security level for accessing the configuration displays
Batch stack display level	5000	Minimum security level for the batch stack display
Batch recalculation display level	5000	Minimum security level for the batch recalculation displays

Auto batch end

Di	Display \rightarrow Configuration, Overall setup, Auto batch end

Automatic batch end	1000	Determines if and ho	w batches are ended automatically
mode		0: Disabled 1: Daily	Batches are not ended automatically Automatic batch end every day at 'Hour of day for automatic batch end'
		2: Scheduled 3: Batch size	Automatic batch ends at the scheduled dates Automatically ends the batch when the defined batch size (in batch stack) has been reached
Shift stack on batch end	1000	Shifts the batch stack	upwards at each batch end
Hour of day for automatic	1000	Hour of the day to a end mode' is set to '[utomatically end the batch when 'Automatic batch Daily'.

batch end

Batch end	1000	Up to 5 scheduled dates and times to automatically end the batch. Only
date <x></x>		used when 'Automatic batch end mode' is set to 'Scheduled'.

System data

Display → Configuration, System data System tag 1000 Tag number for the meter station or in case of a single stream flow computer, the meter run, e.g. "YY-100" System 1000 Name of the location of the meter station or in case of a single stream flow computer, the meter run, e.g. "Green field ,South section"

System description	1000	Description of the meter station or in case of a single stream flow computer, the meter run, e.g. "Export stream 2"
System company	1000	Name of the company that owns the meter station or in case of a single stream flow computer, the meter run, e.g. "LiqTransco"
Flow computer tag	1000	Tag number of the flow computer, e.g. "FY-1001A"

Meter run setup

Run setup

Display \rightarrow Configuration, Run <x.>, Run setup

with <x> the relative number of the flow module that processes the flow meter

Meter device type	1000	The following meter device types are supported:
		1:Pulse Any flow meter that provides a single or dual pulse signal representing the volumetric or mass flow. Typically used for turbine and PD (Positive displacement) flow meters.
		2: Smart Any flow meter that provides its flow rate and / or total value through an analog or HART signal or via a Modbus communications link.

Typically used for ultrasonic and coriolis flow meters..

For a HART signal and a Modbus communications link the corresponding communications device (refer to [HOLD]) needs to be defined as well.

		through an communicati signal. Either the primary between the Typically use	ter that provides its flow rate and / or total value analog or HART signal or via a Modbus ons link <u>and also</u> outputs a single or dual pulse the smart or the pulse signal may be defined as signal for totalization. Also a deviation check two signals is performed. d for ultrasonic and coriolis flow meters that a communications link and a pulse signal.
		4: Orifice Orifice plate	with up to 3 differential pressure transmitters.
Standard dens/grav	1000	Defines how the stan	dard density / gravity is determined
input type		0: Calculated (from o The standarc density / grav	density/gravity is calculated from the observed
			e on when a fixed value is used for the standard rity. This fixed value is retrieved from the product
		2: Analog input	
		4: HART	
		value' will be option when flow compute	at is written to tag 'Standard dens/grav custom e used as the observed density / gravity. Use this the standard density / gravity value is sent to the er over a communications link or when you want to tom-made calculation for the standard density e.
Standard	1000	Units to be used for t	he standard density / gravity.
dens/grav input units		1: API gravity 2: Relative density 3: Density [g/cc]	The standard density is expressed in degrees API Relative density / specific gravity Density in g/cc
Observed	1000	Defines how the obse	erved density / gravity is determined
dens/grav input type		0: None There is no ol	oserved density / gravity input

Use this option when a fixed value is used for the observed density

- 2: Analog input
- 4: HART
- 5: Custom

The value that is written to tag 'Observed dens/grav custom value' will be used as the observed density. Use this option when the observed density / gravity value is sent to the flow computer over a communications link or when you want to apply a custom-made calculation for the observed density / gravity value.

6: Single densitometer

7: Dual densitometer

- 8: Smart flow meter Uses the Modbus density value from the Coriolis flow meter Observed 1000 Units to be used for the observed density / gravity input signal. dens/grav
 - 1: API gravityThe input signal represents API gravity2: Relative densityThe input signal represents the relative
density (or the specific gravity)3: Density [g/cc]The input signal represents the density in
g/cc. Typically used for densitometers

Flow meter setup

input units

The type of flow meter is set up under *Configuration, Run <x>, Run Setup*.

Display \rightarrow Configuration, Run <x.>, Flow meter, Meter data

with <x> the relative number of the flow module that processes the flow meter

Meter tag	1000	Flow meter tag, e.g. 'FT-1023AA'
Meter ID	1000	Flow meter ID, e.g. 'Check meter export 2'
Meter serial number	1000	Flow meter serial number, e.g. 'H1009245'

Chapter 4 - Configuration Meter run setup

Meter manufacturer	1000	Flow meter serial number, e.g. 'H1009245'
Meter model	1000	Flow meter model, e.g. 'Promass 83'
Meter size	1000	Flow meter size, e.g. '120 mm' or ' 11" '

Pulse input

These parameters are only available when Meter device type is either 'Pulse' or 'Smart / Pulse'.

with <x> the relati</x>	ive number	of the flow module that processes the flow meter
Pulse input quantity type	1000	Either 'Volumetric' for a volumetric flow meter (e.g. turbine, PD ultrasonic) or 'Mass' for a mass flow meter (e.g. coriolis)
Single or dual pulse input	1000	Defines whether the pulse input is a single or a dual signal. In case of a dual signal, pulse fidelity checking is enabled and the A and B pulse signals are compared and possible error pulses are accumulated and reported. In case of a single pulse signal no fidelity checking is performed at all.
		1: Single 2: Dual
Meter actv threshold freg	1000	When the actual frequency (Hz) is below this threshold value, the meter is considered to be inactive and the flow rates are forced to 0.
·		Note: Setting ' Disable totals when meter inactive ' (refer to display 'Configuration, System, Totals') defines whether or not the flow totals should be stopped when the meter is inactive.
Pulse fidelity level A	1000	When enabled the corrected pulses (ISO-6651 level A) are used for flow totalization. When disabled the raw pulses (ISO-6651 level B) o channel A or, in case channel A does not provide any pulses, of channe B are used instead.

Smart meter

Only available when Meter device type is either 'Smart' or 'Smart / Pulse'.

Display \rightarrow Configuration, Run <x.>, Flow meter, Smart meter

with <x> the relative number of the flow module that processes the flow meter

Smart meter input type	1000	Type of input used for the 'smart' flow meter
mpar type		1: HART/Modbus (Serial, Ethernet or HART) 2: Analog input
Use flowrate or total	1000	Only applies when input type = 'HART'.
		Determines whether the flow rate or the flow total value as provided by the flow meter is used for flow totalization.
		1: Flow rate 2: Flow total
		Note: an analog input always represents a flow rate.
Analog input quantity type	1000	Only applies when input type = 'Analog input'
4		1: Volume 2: Mass
		For communication inputs this is determined automatically from the 'Communication template' of the assigned communication device.
Analog input module	1000	Only applies when input type = 'Analog input'
		Number of the flow module to which the analog signal is physically connected.
		Default is the local module, i.e. the module of this meter run
Analog input channel	1000	Only applies when input type = 'Analog input'
		Number of the analog input channel to which the analog signal is physically connected.
HART/Modbus internal	1000	Only applies when input type = 'HART/Modbus'.
device nr.		Internal device nr. of the communication device as assigned in by the configuration software (Flow-Xpress, section 'Ports & Protocols')
HART to analog fallback	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead value corresponding with the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.

Chapter 4 - Configuration Meter run setup

Meter active threshold FR	1000	Meter will be considered inactive when the flow rate is below this limit value. The value should have the same units as used by the flow rate that is indicated by flow meter.
		Note: Setting ' Disable totals when meter inactive ' (refer to display ' <i>Configuration, System, Totals</i> ') defines whether or not the flow totals should be stopped when the meter is inactive
Pulse is	1000	Only applies when meter type is 'Smart / pulse'.
primary		Controls whether the pulse input or the smart input is used as the primary source for flow totalization.
		1: No -> Smart input is primary 2: Yes -> Pulse input is primary
		When the primary input fails, while the secondary input is healthy, then the secondary input will be used for totalization.
		Note that a single pulse input is always considered to be healthy.
Flow deviation limit smart /	1000	Only applies when meter type is 'Smart / pulse'.
pulses		The flow rate as indicated by the smart and pulse inputs are compared and an alarm is raised when the absolute deviation between the two is larger than the ' <i>Flow deviation limit</i> '.
Flow Meter Total Rollover		Only applies for a smart meter when 'Flow total' is used for flow accumulation of flow.
		Defines the value at which the total as received from the flow meter rolls-over to 0. When the current total value indicated by the flow meter is smaller than the previous value total, then the Flow-X calculates the increment assuming that a roll-over occurred. It then checks that the increment does not exceed the 'Flow Meter Max. Change In Total'.
Flow Meter Max. Change in Total		Only applies for a smart meter when 'Flow total' is used for flow accumulation of flow.
		Any increments in the flow total as received from the flow meter larger than this value will be considered <u>invalid</u> .

Orifice

For orifice plates in accordance with AGA Report 3.

Only available when Meter device type is 'Orifice'

General

Display \rightarrow Configuration, Run <x.>, Flow meter, Orifice

4-57

with <x> the relative number of the flow module that processes the flow meter</x>				
Meter active threshold dP	1000		rential pressure is below this threshold value, the be inactive and the flow rates are forced to 0.	
		Note: Setting ' Disable totals when meter inactive ' (refer to display ' <i>Configuration, System, Totals'</i>) defines whether or not the flow totals should be stopped when the meter is inactive.		
Pipe diameter	1000	Internal pipe diameter	[Inches]	
Pipe reference temperature	1000	Pipe reference temp diameter [°F]	perature that corresponds with the specified	
Pipe expansion factor -Type	1000	Selects the pipe material used to set the pipe linear thermal expansion factor		
		1: Carbon steel 2: Stainless steel 304 3: Stainless steel 316 4: Monel 5: User-defined		
Pipe expansion	1000	User-defined value for pipe linear thermal expansion factor $[1/^{\circ}F]$		
factor -User		Only used when 'Pipe	expansion factor - Type' is set to 'User-defined'	
dP device diameter	1000	Orifice diameter [mm]		
dP device reference temperature	1000	Orifice reference ten diameter [°F]	nperature that corresponds with the specified	
dP device expansion factor - Type	1000	Selects the orifice material used to set the orifice linear th expansion factor		
		1: Carbon steel 2: Stainless steel 304 3: Stainless steel 316 4: Monel 5: User-defined	6.2e-6 [1/°F] 6.9e-6 [1/°F] 8.83e-6 [1/°F] 7.95e-6 [1/°F] (uses the 'dP device expansion factor - User')	
dP device	1000	User-defined value for	orifice linear thermal expansion factor [1/°F]	
expansion factor - User		Only used when 'dP defined'	device expansion factor - Type' is set to 'User-	
Pressure location	1000	Location of the pressu orifice plate.	re tap used for the static pressure relative to the	

Chapter 4 - Configuration Meter runs	setup
--------------------------------------	-------

4-58

		1: Upstream 2: Downstream
		When '2: downstream' is selected, a correction of the meter pressure to upstream conditions is applied. Refer to chapter Calculations for more details
Temperature location	1000	Location of the temperature element relative to the orifice plate
		1: Upstream At the upstream tap
		2: Downstream At the downstream tap
		3: Recovered Downstream at the location where the pressure has fully recovered.
		When '2: downstream' or '3: Recovered' is selected, a correction of the meter temperature to upstream conditions is applied. Refer to chapter Calculations for more details
Temperature correction	1000	This parameter specifies how the temperature must be corrected from downstream to upstream conditions
		1: (1-κ)/κ Isentropic expansion using (1-κ)/κ as the temperature referral exponent
		2: Constant Isentropic expansion using the 'Pressure Exponent' parameter value as the temperature referral exponent [-]. Please note that the 'Pressure Exponent' must be < 0
		3: Joule Thomson Isenthalpic expansion using input 'Pressure Exponent' as the Joule Thomson coefficient [°F/psi].
Temperature exponent	1000	Only used when temperature has to be corrected to upstream conditions and when type of temperature correction is either '2: Constant' or '3: Joule Thomson'.

dP inputs

Only available when Meter device type is 'Orifice'

Up to 3 differential pressure can be used for dP measurement, required for orifice, venturi en v-cone flow meters.

The flow computer can handle the following type of cell range configurations:

- 1 cell
- 2 cells, 1 with low and 1 with high range
- 2 cells, both with equal range
- 3 cells, with low, mid and high range
- 3 cells. 1 with low and 2 with high range
- 3 cells with equal range

The flow computer selects between 2 or 3 input cells based on the actual measured value and the failure status of each cell.

The selection logic is described in chapter Calculations.

dP selection

Display \rightarrow Configuration, Run <x.>, Flow meter, dP inputs

with <x> the relative number of the flow module that processes the flow meter

dP type	selection e	1000	dP selection type 1: high (1 cell)
			2: low high (2 cells) Cell A at low range Cell B at high range
			3: high high (2 cells) Cell A and B at same range
			4: low mid high (3 cells) Cell A at low range Cell B at mid range Cell C at high range
			5: low high high (3 cells) Cell A at low range Cell B and C at high range
			6: high high high (3 cells) Cell A, B and C at same range
	cch up centage	1000	Switch-up value expressed as percentage of span of the lower range. Only used for 2 or 3 cells when more than one dP range is used. Refer to chapter 'Calculations' for more information on its usage.
	ch down centage	1000	Switch-down value expressed as percentage of span of the lower range. Only used for 2 or 3 cells when more than one dP range is used. Refer

to chapter 'Calculations' for more information on its usage.

 dP auto
 1000
 Determines whether or not to switch to a dP transmitter when it becomes healthy after a failure. Refer to chapter 'Calculations' for more information on its usage.

 0: Disabled
 1: Enabled

dP input A, B and C

Only available when Meter device type is 'Orifice'

with <x> the relative number of the flow module that processes the flow meter</x>			
dP input type	1000	Type of input for dP cell	
		1: Analog input	
		2: HART input 3: Communication value	
		When option 3: Communication value is shown then the actual value should be written to the corresponding tag in the flow computer via a communications link.	
dP analog	1000	Only applies when input type is '1: Analog input'	
input module		Number of flow module to which the dP signal is physically connected to.	
		Default is the local module, i.e. the module of this meter run	
dP analog input channel	1000	Only applies when input type is '1: Analog input'	
		Number of analog input channel to which the dP signal is physically connected to.	
dP HART	1000	Only applies when input type is '2: HART'	
internal device nr.		Internal device nr. of the HART transmitter (or communication device) as assigned in the configuration software (Flow-Xpress, section 'Devices & Protocols')	
dP HART	1000	Only applies when input type is '2: HART'	
variable value		Determines which of the 4 HART variables as provided by the HART transmitter represents the dP value Usually this is the 1st (primary) variable.	
dP HART	1000	Only applies when input type is '2: HART'	

variable percentage

Determines which of the 4 HART variables as provided by the HART transmitter represents the **dP percentage of range [%]**. The percentage of range is required for dP selection in case of multiple dP transmitters with different ranges are used (low and high range).

Data valid input

Only available when Meter device type is either 'Pulse' or 'Smart / Pulse'.

The Data Valid input is **not** actually used within the standard application. It can be used for informative purposes and within user-defined calculations

Display \rightarrow Configuration, Run <x.>, Flow meter, Data valid input

with <x> the relative number of the flow module that processes the flow meter

Data valid input type	1000	Type of input used for the 'smart' flow meter	
		0: None	
		1: Digital input	
		2: Smart meter	
		3: Custom	
Data valid input module	1000	Applies when type is 'Digital input'. Number of Flow-X/M module to which the input is connected.	
Data valid input channel	1000	Applies when type is 'Digital input'. Channel number used for the digital input.	

Flow direction input

Only available when Reverse totals are Enabled.

Display \rightarrow Configuration, Run <x.>, Flow meter, Flow direction input

with <x> the relative number of the flow module that processes the flow meter

Data valid input type	1000	Type of input used for the 'smart' flow meter		
		0: None		
		1: Meter pulse phase	Based on 90° phase shift for a dual pulse input	
		2: Digital input		
		2: Smart meter input	Based on Modbus from smart flow meter	
		3: Custom		

Chapter 4 - Configuration Setting up the temperature

Data valid input module	1000	Applies when type is 'Digital input'. Number of Flow-X/M module to which the input is connected.
Data valid input channel	1000	Applies when type is 'Digital input'. Channel number used for the digital input.
Smart meter device	1000	Applies when input type is 'Smart meter input' and defines the actual smart flow meter.

Meter body correction

Only available when Meter device type is either 'Smart' or 'Smart / Pulse'.

The meter body correction facility is meant for <u>ultrasonic flow meters</u> for which a correction of the expansion of the meter body may be required.

Display \rightarrow Configuration, Run <x.>, Flow meter, Meter body correction with <x> the relative number of the flow module that processes the flow meter

Meter body correction	900	Controls if the correction is enabled or not
		0: Disabled 1: Enabled
Linear temperature expans coef	900	Linear temperature expansion coefficient [1/°F]
Body corr reference temp	900	Reference temperature for body correction [°F]
Linear pressure expans coef	900	Linear pressure expansion coefficient [1/psi]
Body corr reference pres	900	Reference pressure for body correction [psig]

Refer to chapter Calculations for more details

Setting up the temperature

Two temperature inputs are used at meter run level, the meter temperature and, in case of a live density / gravity measurement at meter run level, the density temperature (i.e. the temperature at the point where the density or gravity is measured).

Chapter 4 - Configuration Setting up the temperature

At station level also two temperature inputs are available, the station temperature and, in case of a live density / gravity measurement at station level, the density temperature.

 $Display \rightarrow Configuration, Run <x.>, Pressure (, Meter temperature)$ $Display \rightarrow Configuration, Run <x.>, Pressure, Density temperature$ $Display \rightarrow Configuration, Station, Pressure (, Station temperature)$ $Display \rightarrow Configuration, Station, Pressure, Density temperature$ $Display \rightarrow Configuration, Proving, Pressure, Prover inlet temperature$ $Display \rightarrow Configuration, Proving, Pressure, Prover outlet temperature$ $Display \rightarrow Configuration, Proving, Pressure, Prover outlet temperature$ $Display \rightarrow Configuration, Proving, Pressure, Prover rod temperature$

with <x> the relative number of the flow module that processes the flow meter

The density temperature at either meter run or station level is only available when the following parameters are configured as indicated:

Density temperature measurement <u>at meter run level</u> requires the following settings:

Display:	Configuration, Overall setup, Overall setup
Parameter	Common density input
Value	No
Display:	Configuration, Run <x>, Density (, Density setup)</x>
Parameter	Density input type
Value	Densitometer or Density process input

When the density temperature measurement is <u>at station level</u> the following settings need to be defined:

Display:	Configuration, Overall setup, Overall setup
Parameter	Common density input
Value	Yes
Display:	Configuration, Station, Density (, Density setup)
Parameter	Density input type
Value	Densitometer or Density process input

Input type 1000 Type of input

0: None

Meaning of option 'None' depends on the actual variable:

Density temperature : Meter temperature will be used instead *Prover inlet temperature* : Meter temperature will be used instead *Prover outlet temperature* : Prover inlet temperature will be used instead

This option is not applicable for meter temperature.

1: Always use override 2: Analog input

Chapter 4 - Configuration Setting up the temperature	

		3: Pt100 input 4: HART 5: Custom
		When option 5: Custom is selected then the actual value should be written to the corresponding tag in the flow computer via a communications link or via user-defined logic.
Analog / Pt100 input	1000	Only applies when input type is '2: Analog input' or '3: Pt100 input'
module		Number of flow module to which the signal is physically connected to.
		'Local module' means the Flow-X flow module to which the meter run is assigned to through 'Device setup'.
Analog / Pt100 input	1000	Only applies when input type is '2: Analog input' or '3: Pt100 input'
channel		Number of analog input channel to which the signal is physically connected to.
HART internal device nr.	1000	Only applies when input type is '4: HART
		Internal device nr. of the communication device as assigned in by the configuration software (Flow-Xpress, section 'Devices & Protocols')
HART variable	1000	Only applies when input type is '4: HART'
		Determines which of the 4 HART variables as provided by the HART transmitter represents the dP value. Usually this is the 1st (primary) variable.
Fallback type	1000	Determines what to do in case the input fails.
		1: Last good value Keep on using the last value that was obtained while the input was still healthy.
		2: Fallback value Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value (typically 0) and never changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used when Fallback type is '2: Fallback value'.
		Represents the value in engineering units that should be used when the input fails.
HART to analog	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
fallback		0: Disabled

Chapter 4 - Configuration Setting up the pressure

The 4-20 mA signal will not be used when the HART signal fails. Instead value corresponding with the 'Fallback type' will be used.

1: Enabled

The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.

Setting up the pressure

Two pressure inputs are used at meter run level, the meter pressure and, in case of a live density or gravity measurement at meter run level, the density pressure (i.e. the pressure at the point where the density or gravity is measured).

At station level also two pressure inputs are available, the station pressure and, in case of a live density measurement at station level, the density pressure.

Display → Configuration, Run <x.>, Pressure (, Meter pressure) Display → Configuration, Run <x.>, Pressure, Density pressure Display → Configuration, Station, Pressure (, Station pressure) Display → Configuration, Station, Pressure, Density pressure Display → Configuration, Proving, Pressure, Prover inlet pressure Display → Configuration, Proving, Pressure, Prover outlet pressure Display → Configuration, Proving, Pressure, Plenum pressure

with <x> the relative number of the flow module that processes the flow meter

The density pressure at either meter run or station level is only available when the following parameters are configured as indicated:

Density pressure measurement at meter run level requires the following settings:

Display:	Configuration, Overall setup, Overall setup
Parameter	Common density input
Value	No
Display:	Configuration, Run <x>, Density (, Density setup)</x>
Parameter	Density input type
Value	Densitometer or Density process input

When the density pressure measurement is <u>at station level</u> the following settings need to be defined:

Display:	Configuration, Overall setup, Overall setup
Parameter	Common density input
Value	Yes
Display: Parameter Value	Configuration, Station, Density (, Density setup) Density input type Densitometer or Density process input

Chapter 4 - Configuration Setting up the pressure

Input type	1000	Type of input
		0: None
		Meaning of option 'None' depends on the actual variable:
		Density pressure : Meter temperature will be used instead Prover inlet pressure : Meter temperature will be used instead Prover outlet pressure : Prover inlet temperature will be used instead
		This option is not applicable for meter temperature.
		1: Always use override 2: Analog input 4: HART 5: Custom
		When option 4: Hart/Modbus is selected, then the actual value should be written to the corresponding tag in the flow computer via a communications link.
input module	1000	Only applies when input type is '2: Analog input'
		Number of flow module to which the signal is physically connected to.
		Local module means the Flow-X flow module to which the meter run is assigned to through 'Device setup'
input channel	1000	Only applies when input type is '2: Analog input'
		Number of analog input channel to which the signal is physically connected to.
HART internal device nr.	1000	Only applies when input type is '4: HART'
device hr.		Internal device nr. of the communication device as assigned in by the configuration software (Flow-Xpress, section 'Devices & Protocols')
HART variable	1000	Only applies when input type is '4: HART'
		Determines which of the 4 HART variables as provided by the HART transmitter represents the dP value. Usually this is the 1st (primary) variable.
Input units	1000	1: Absolute The input value is an absolute pressure
		2: Gauge The input value is a gauge pressure (i.e. relative to the atmospheric pressure)
Fallback type	1000	Determines what to do in case the input fails.

		Chapter 4 - Configuration Setting up the density / gravity
		1: Last good value Keep on using the last value that was obtained while the input was still healthy.
		2: Fallback value Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value (typically 0) and never changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used when Fallback type is '2: Fallback value'.
		Represents the value in engineering units that should be used when the input fails.
HART to analog	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
fallback		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead value corresponding with the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.

Setting up the density / gravity

In case the flow computer is used for 2 or more meter runs, the density / gravity input can be a common input for all the meter runs or a separate input for each meter run. E.g. a densitometer can be installed in the header of the metering station in which case one and the same density measurement is used for all meter runs.

Whether the density setup is on station or meter run level is controlled by parameter **Station product**, which is accessible through display *Configuration, Overall setup**Overall setup*.

 $Display \rightarrow Configuration, Run < x.>, Density (, Density setup)$ $Display \rightarrow Configuration, Station, Density (, Density setup)$

with <x> the relative number of the flow module that processes the flow meter

Observed density/gravity

The following settings apply when the 'Observed dens/grav input type' is set to '2: Analog input', '4: HART' or '5: Custom'.

Display → Configuration, Run <x.>, Density (, Observed dens/grav) Display → Configuration, Station, Density (, Observed dens/grav)</x.>			
with <x> the relat</x>	with <x> the relative number of the flow module that processes the flow meter</x>		
Input units	1000	Defines the unit for observed density / gravity input.	
		The unit is used to scale the analog input (if applicable) and for the override value.	
		1: Relative density 2: API gravity 3: Density [g/cc]	
Analog input module	1000	Only applies when input type is '2: Analog input'	
module		Number of flow module to which the signal is physically connected to.	
		Local module means the Flow-X flow module to which the meter run is assigned to through 'Device setup'	
Analog input channel	1000	Only applies when input type is '2: Analog input'	
channel		Number of analog input channel to which the signal is physically connected to.	
HART internal	1000	Only applies when input type is '4: HART'	
device nr.		Internal device nr. of the communication device as assigned in by the configuration software (Flow-Xpress, section 'Devices & Protocols')	
HART variable	1000	Only applies when input type is '4: HART'	
		Determines which of the 4 HART variables as provided by the HART transmitter represents the dP value. Usually this is the 1st (primary) variable.	
Fallback type	1000	Determines what to do in case the input fails.	
		1: Last good value Keep on using the last value that was obtained while the input was still healthy.	
		2: Fallback value Use the value as specified by parameter 'Fallback value'	
		The fallback value is usually a fixed value (typically 0) and never changed during the lifetime of the flow computer.	
		3: Override value Use the value as specified by parameter 'Override value'	

4-69

Fallback value	1000	Only used when Fallback type is '2: Fallback value'.
		Represents the value in engineering units that should be used when the input fails.
HART to analog fallback	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
Tanback		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead value corresponding with the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.
Smart meter device	1000	Smart meter that provides the observed density value over Modbus

Densitometer

Following display is only available when 'Observed density input type' is set to 'Single densitometer' or 'Dual densitometer'

Display \rightarrow Configuration, Run <x.>, Density, Densitometer(s) Display \rightarrow Configuration, Station, Density, Densitometer(s)

with <x> the relative number of the flow module that processes the flow meter

Densitometer select mode	1000	Only applies when 'Observed density input type' is set to 'Dual densitometer'.
		Densitometer selection mode.
		 Auto-A Densitometer B only used when densitometer A fails and densitometer B is healthy. Densitometer A is used in all other cases.
		2: Auto-B Densitometer A is only used when densitometer B fails and densitometer A is healthy. Densitometer B is used in all other cases.
		3: Manual-A Always use densitometer A irrespective of its failure status
		4: Manual-B Always use densitometer B irrespective of its failure status

Fallback type	1000	Determines what to do in case the input fails.
		1: Last good value Keep on using the last value that was obtained while the input was still healthy.
		2: Fallback value Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value (typically 0) and never changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used when Fallback type is '2: Fallback value'.
		Represents the value in engineering units that should be used when the input fails.
Densitometer A type	1000	Densitometer A device type. The application supports Solartron, Sarasota, UGC and Densitrak densitometers
Densitometer A corr factor	1000	Overall correction factor for densitometer A. The density as measured by densitometer A is multiplied by this factor.
Time period A input module	1000	Flow-X module to which the densitometer A signal is connected to.
Time period A input channel	1000	Defines the time period input of the Flow-X module for densitometer A. Each module has a maximum of 4 time period inputs.
Densitometer B type	1000	Only applies when 'Observed density input type' is set to 'Dual densitometer'.
		Densitometer B device type.
Densitometer B corr factor	1000	Only applies when 'Observed density input type' is set to 'Dual densitometer'.
		Overall correction factor for densitometer B. The density as measured by densitometer A is multiplied by this factor.
Time period B input module	1000	Only applies when 'Observed density input type' is set to 'Dual densitometer'.
		Flow-X module to which the densitometer B signal is connected to.
Time period B input channel	1000	Only applies when 'Observed density input type' is set to 'Dual densitometer'.
		Defines the time period input of the Flow-X module for densitometer B.

Each module has a maximum of 4 time period inputs.

Solartron / Sarasota / UGC / Densitrak densitometer setup

The densitometer constants are device-specific and can be defined on the following display.

Display \rightarrow Configuration, Run <x.>, Density, Densitometer, Densitometer A / B Display \rightarrow Configuration, Station, Density, Densitometer, Densitometer A / B

with <x> the relative number of the flow module that processes the flow meter , and <Type> being Solartron, Sarasota, UGC or Densitrak.

All densitometer constants are at security level 1000.

Refer to section calculations for the meaning of these settings.

Standard density / gravity

The following settings apply when the 'Standard density input type' is set to '2: Analog input', '4: HART' or '5: Custom'.

		Run <x.>, Density (, Standard dens/grav input) Station, Density (,Standard dens/grav input)</x.>
with <x> the relative number of the flow module that processes the flow meter</x>		
Input units	1000	Defines the unit for standard density / gravity input.
		The unit is used to scale the analog input (if applicable) and for the override value.
		1: Relative density 2: API gravity 3: Density [g/cc]
Analog input module	1000	Only applies when input type is '2: Analog input'
module		Number of flow module to which the signal is physically connected to.
		Local module means the Flow-X flow module to which the meter run is assigned to through 'Device setup'
Analog input channel	1000	Only applies when input type is '2: Analog input'
channei		Number of analog input channel to which the signal is physically connected to.
HART internal	1000	Only applies when input type is '4: HART'
device nr.		Internal device nr. of the communication device as assigned in by the configuration software (Flow-Xpress, section 'Devices & Protocols')

Chapter 4 - Configuration Setting up a BS&W input

HART variable	1000	Only applies when input type is '4: HART'
		Determines which of the 4 HART variables as provided by the HART transmitter represents the dP value. Usually this is the 1st (primary) variable.
Fallback type	1000	Determines what to do in case the input fails.
		1: Last good value Keep on using the last value that was obtained while the input was still healthy.
		2: Fallback value Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value (typically 0) and never changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used when Fallback type is '2: Fallback value'.
		Represents the value in engineering units that should be used when the input fails.
HART to analog fallback	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
Taliback		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead value corresponding with the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.

Setting up a BS&W input

The application supports a BS&W input. The BS&W value is used for the calculation of the net standard volume flow rate.

 $\begin{array}{l} \textit{Display} \rightarrow \textit{Configuration, Run <x.>, BSW} \\ \textit{Display} \rightarrow \textit{Configuration, Station, BSW} \end{array}$

with <x> the relative number of the flow module that processes the flow meter

Input type 1000 Type of input

0: Not used (forces BSW to 0)

Chapter 4 - Configuration	Setting up a	BS&W input
---------------------------	--------------	------------

1: Always use override 2: Analog input 4: HART 5: Custom

When option 4: HART value is shown then the actual value should be written to the corresponding tag in the flow computer via a communications link.

input module	1000	Only applies when input type is '2: Analog input'
		Number of flow module to which the signal is physically connected to.
		Local module means the Flow-X flow module to which the meter run is assigned to through 'Device setup'
input channel	1000	Only applies when input type is '2: Analog input'
		Number of analog input channel to which the signal is physically connected to.
HART internal device nr.	1000	Only applies when input type is '4: HART'
		Internal device nr. of the communication device as assigned in by the configuration software (Flow-Xpress, section 'Devices & Protocols')
HART variable	1000	Only applies when input type is '4: HART'
		Determines which of the 4 HART variables as provided by the HART transmitter represents the dP value. Usually this is the 1st (primary) variable.
Fallback type	1000	Determines what to do in case the input fails.
		1: Last good value Keep on using the last value that was obtained while the input was still healthy.
		2: Fallback value Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value (typically 0) and never changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used when Fallback type is '2: Fallback value'.
		Represents the value in engineering units that should be used when the input fails.
HART to	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is

Chapter 4 - Configuration Setting up a viscosity input

analog fallback

provided together with the HART signal.

0: Disabled

The 4-20 mA signal will not be used when the HART signal fails. Instead value corresponding with the 'Fallback type' will be used.

1: Enabled

The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.

Setting up a viscosity input

The application supports a viscosity input. The viscosity value is used to correct for the influence of the viscosity on turbine and PD flow meters. Refer to section *Configuration*\...*Flow meter**Viscosity correction*.

 $\begin{array}{l} \textit{Display} \rightarrow \textit{Configuration, Run <x.>, Viscosity} \\ \textit{Display} \rightarrow \textit{Configuration, Station, Viscosity} \end{array}$

with <x> the relative number of the flow module that processes the flow meter

Input type	1000	Type of input
		0: Not used 1: Always use override 2: Analog input 4: HART 5: Custom
		When option 4: HART value is shown then the actual value should be written to the corresponding tag in the flow computer via a communications link.
input module	1000	Only applies when input type is '2: Analog input'
		Number of flow module to which the signal is physically connected to.
		Local module means the Flow-X flow module to which the meter run is assigned to through 'Device setup'
input channel	1000	Only applies when input type is '2: Analog input'
		Number of analog input channel to which the signal is physically connected to.
HART internal	1000	Only applies when input type is '4: HART'
device nr.		Internal device nr. of the communication device as assigned in by the configuration software (Flow-Xpress, section 'Devices & Protocols')

		4-75
		Chapter 4 - Configuration Setting up pulse outputs
HART variable	1000	Only applies when input type is '4: HART'
		Determines which of the 4 HART variables as provided by the HART transmitter represents the dP value. Usually this is the 1st (primary) variable.
Input units	1000	1: Absolute The input value is an absolute pressure
		2: Gauge The input value is a gauge pressure (i.e. relative to the atmospheric pressure)
Fallback type	1000	Determines what to do in case the input fails.
		1: Last good value Keep on using the last value that was obtained while the input was still healthy.
		2: Fallback value Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value (typically 0) and never changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used when Fallback type is '2: Fallback value'.
		Represents the value in engineering units that should be used when the input fails.
HART to analog fallback	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
Taliback		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead value corresponding with the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.

Setting up pulse outputs

Each flow module provides a maximum of 4 pulse outputs.

Pulse outputs can be set up both at meter run level for $\underline{run \ totals}$ and at station level for $\underline{station}$ \underline{totals} .

Chapter 4 - Configuration Setting up analog outputs

The station pulse outputs are only available when the following parameter has been set.

Display:	Configuration, Overall setup, Overall setup
Parameter	Station totals and rates
Value	Enabled

Display → Configuration, Run <x.>, Pulse outputs Display → Configuration, Station, Pulse outputs

with <x> the relative number of the flow module that processes the flow meter

Totalizer	1000	The totalizer that is used for the pulse output.
		When the configuration is at meter run level the run total will be used, while at station level the station total will be used.
		 -1:Custom 0: Not assigned 1: Indicated volume (forward) 2: Gross volume (forward) 3: Gross standard volume (forward) 4: Net standard volume (forward) 5: Mass (forward) 6: Good pulses (forward; only for runs) 7: Error pulses (forward; only for runs) 8: Indicated volume (reverse) 9: Gross volume (reverse) 10: Gross standard volume (reverse) 11: Net standard volume (reverse) 12: Mass (reverse) 13: Good pulses (reverse; only for runs) 14: Error pulses (reverse; only for runs)
Module	1000	Number of flow module to which the signal is physically connected to.
Index	1000	Pulse output number of the specified module to which the signal is physically connected to.
Significance	1000	Factor that specifies the relation between the input value and the number of output pulses.
		E.g. a value of 100 means that 1 pulse is generated whenever 100 input units (e.g. bbl) have been accumulated.

Setting up analog outputs

Each flow module provides 4 analog outputs, which can be set up at meter run level and at station level.

The station analog outputs are only available when the following parameter has been set.

Display: Configuration, Overall setup, Overall setup

Chapter 4 - Configuration Product definition

Parameter Station totals and rates Value Yes

Display \rightarrow Configuration, Run <x.>, Analog outputs Display \rightarrow Configuration, Station, Analog outputs

with <x> the relative number of the flow module that processes the flow meter

Variable	1000	The variable that is used for outputting the analog output.
		When the configuration is at meter run level the run total will be used, while at station level the station total will be used.
		 -1: Custom 0: Not assigned 1: Indicated volume flow rate 2: Gross volume flow rate 3: Gross standard volume rate 4: Net standard volume rate 5: Mass flow rate 6: Standard density 7: Meter temperature 8: Meter pressure
Module	1000	Number of flow module to which the signal is physically connected to.
Channel	1000	Analog output channel of the specified module to which the signal is physically connected to.
Zero scale	1000	The zero scale value for the variable. When the variable is at this value the output will be 4 mA.
		For flow rates the value should specified on an hourly basis, i.e. bbl/h, and Klbm/hr
Full scale	1000	The full scale value for the variable. When the variable is at this value the output will be 20 mA.
		For flow rates the value should specified on an hourly basis, i.e. bbl/h and Klbm/hr

Product definition

Up to 16 products can be defined. The actual product in-use is defined in the batch stack (display 'Batch\(Run <x>)\Batch stack'

Whether the product definition is on station or meter run level is controlled by parameter '**Common product / batch'**, which is accessible through display *Configuration, Overall setup, Overall setup*.

Chapter 4 - Configuration Product definition

with <x> the relat</x>	ive number o	of the flow module that processes the flow meter
Product # <x> name</x>	500	Current product name
Product # <x> dens /grav</x>	1000	Method to convert the density to and from standard conditions
method		1: 5/6A: 1980 Crude API-2540 table 5A / 6A: crude oil at 60 °F.
		 5/6B: 1980 Auto API-2540 table 5B / 6B: Refined product at 60 °F. Automatically determines the table B product range
		3: 5/6B: 1980 Gasoline API-2540 table 5B / 6B: Gasoline at 60 °F
		4: 5/6B: 1980 Transition API-2540 table 5B / 6B: Transition area at 60 °F
		5: 5/6B: 1980 Jet fuel AP -2540 table 5B / 6B: Jet fuel at 60 °F
		6: 5/6B: 1980 Fuel oil AP -2540 table 5B / 6B: Fuel oil at 60 °F
		7: 5/6D: 1982 Lub oil API-2540 table 5D /54D: Lubricating oil at 60 °F
		8 23/24A: 1980 Crude API-2540 table 23A / 24A: crude oil at 60 °F.
		 23/24B: 1980 Auto API-2540 table 23B / 24B: Refined product at 60 °F. Automatically determines the table B product range
		10: 23/24B: 1980 Gasoline API-2540 table 23B / 24B: Gasoline at 60 °F
		11: 23/24B: 1980 Transition API-2540 table 23B / 24B: Transition area at 60 °F
		12: 23/24B: 1980 Jet fuel API-2540 table 23B / 24B: Jet fuel at 60 °F
		13: 23/24B: 1980 Fuel oil API -2540 table 23B / 24B: Fuel oil at 60 °F
		14: 23/24D: 1980 Lub oil API-2540 table 23D / 24D: Lubricating oil at 60 °F

4-78

r

Chapter 4 - Configuration Product definition

- 15: 5/6A: 2004 Crude API 11.1:2004 table 5A / 6A: crude oil at 60 °F.
- 16: 5/6B: 2004 Auto
 API 11.1:2004 table 5B / 6B: Refined product at 60 °F.
 Automatically determines the table B product range
- 17: 5/6B: 2004 Gasoline API 11.1:2004 table 5B / 6B: Gasoline at 60 °F
- 18: 5/6B: 2004 Transition API 11.1:2004 table 5B / 6B: Transition area at 60 °F
- 19: 5/6B: 2004 Jet fuel AP -2540 table 5B / 6B: Jet fuel at 60 °F
- 20: 5/6B: 2004 Fuel oil AP -2540 table 5B / 6B: Fuel oil at 60 °F
- 21: 5/6D: 2004 Lub oil API 11.1:2004 table 5D /54D: Lubricating oil at 60 °F
- 22 23/24A: 2004 Crude API 11.1:2004 table 23A / 24A: crude oil at 60 °F.
- 23: 23/24B: 2004 Auto API 11.1:2004 table 23B / 24B: Refined product at 60 °F. Automatically determines the table B product range
- 24: 23/24B: 2004 Gasoline API 11.1:2004 table 23B / 24B: Gasoline at 60 °F
- 25: 23/24B: 2004 Transition API 11.1:2004 table 23B / 24B: Transition area at 60 °F
- 26: 23/24B: 2004 Jet fuel API 11.1:2004 table 23B / 24B: Jet fuel at 60 °F
- 27: 23/24B: 2004 Fuel oil API 11.1:2004 table 23B / 24B: Fuel oil at 60 °F
- 28: 23/24D: 2004 Lub oil API 11.1:2004 table 23D / 24D: Lubricating oil at 60 °F
- 29: 23/24E: 2007 NGL/LPG API MPMS 11.2.4 (GPA TP-27) NGL /LPG at 60 °F. Fully complies with GPA TP-25.
- 30: Propylene (API 11.3.3.2) In compliance with API MPMS 11.3.3.2 Propylene Compressibility Tables, 1974, Reaffirmed 1997.

Chapter 4 - Configuration Product definition		
		31: Ethylene (IUPAC) In compliance with IUPAC International Thermodynamic Tables of the Fluid State Vol. 10 (1988),
		32: 5/6: 1952 In compliance with Tables 5 and 6 of ASTM-IP Petroleum Measurement Tables - American Edition - 1952
		33: 23/24: 1952 In compliance with Tables 23 and 24 of ASTM-IP Petroleum Measurement Tables - American Edition - 1952
Product # <x></x>	1000	The standard density / gravity override value.
std dens/grav override		The meaning of the value depends on the setting 'Standard dens/grav input unit': relative density, API gravity or density [g/cc]
		Used when <i>Density input type</i> is 1: Always use override, or when standard density/gravity is overridden with a override value
Product # <x> std dens/grav units</x>	1000	The standard density / gravity units used for the override value and, in case there is a standard density/ gravity input signal, for the input value as well.
		1: Relative density 2: API gravity 3: Density [g/cc]
Product # <x> vapor pres</x>	1000	Method to determine the equilibrium pressure.
mode		1: Override The 'Equilibrium pres set value' is used for the calculation of CPL
		2: Calculate (TP-15) The equilibrium pressure is calculated in accordance with GPA TP-15
		As opposed to API MPMS 11.1:1980 (API-2540), method 1 does not apply for API MPMS 11.1:2004, because the latter standard assumes an equilibrium pressure of 0 psig.
		Method 2 (GPA TP-15) only applies for NGL / LPG.
Product # <x> vapor pressure</x>	1000	The fixed equilibrium pressure value.
override		Only is used when Equilibrium pres method equals 1: Use set value.
Product # <x> F factor override</x>	1000	Enables or disables the override of compressibility factor F calculation. The in-use compressibility factor F is used to calculate the CPL value.

		Chapter 4 - Configuration Proving
Product # <x> F factor override</x>	1000	The value used for compressibility factor F when the compressibility override function is enabled.
Product # <x> P100 correlation</x>	1000	Controls whether the standard or the improved GPA TP-15 correlation is applied. The standard correlation is commonly used for pure products such as propane, butane and natural gasoline. It only requires the relative density and the temperature to calculate the vapor p The improved correlation requires the vapor pressure at 100°F. This method is better suited for varied NGL mixes, where different product mixes could have the same specific gravity but different equilibrium pressure
Product # <x> vapor pres at 100F</x>	1000	The equilibrium pressure of the product at 100 °F. Only used when the GPA-TP15 improved correlation function is enabled.
Product # <x> dynamic viscosity</x>	1000	Dynamic viscosity of the liquid in centiPoise at flowing conditions [cP]. Only used for mass flow rate calculation for differential pressure flow meters
Product # <x> isentropic</x>	1000	Isentropic exponent of the fluid at flowing conditions [dimensionless] Only used for mass flow rate calculation in case of differential pressure flow meters

Proving

The Flow-X supports both sphere (ball/pipe) and compact provers. Master meter proving will be supported in the near future.

The actual settings on the displays shown under 'Configuration\Proving' depend on the type of prover.

The type of prover is defined in display 'Configuration / Overall setup / Overall setup ',

Prover setup

Display $ ightarrow$ Configuration, Proving, Prover setup			
Prover tag name	1000	The prover tag number, e.g. "PR-003" (in accordance with the P&ID)	
Prover ID	1000	The prover ID, e.g. "16 inch prover".	

Chapter 4 - Confi	guration	I Proving		
Prover manufacturer	1000	Manufacturer of the prover		
Prover material	1000	Material of which the prover body is made, e.g. 'Stainless'		
Prover serial number	1000	Serial number of the prover (as assigned by the supplier), e.g. 'PU-98756DF'		
Prover internal diameter	1000	Prover internal diameter [inches]. Used to calculate the prover steel expansion coefficients.		
Prover wall thickness	1000	Prover wall thickness [inches]. Used to calculate the prover steel expansion coefficients.		
Prover cubic expansion	1000	Only applies for bi-directional and unidirectional pipe provers.		
coefficient		Prover cubic expansion coefficient $[(in^3/in^3)/^{\circ}F]$. Used to calculate the prover Ctsp.		
		Typical values are: 2.88 e-5 for 304 stainless steel, 2.65 e-5 for 316 stainless steel, 1.74e- 5 for carbon steel and 1.86 e-5 for mild steel.		
Prover	1000	Only applies for compact provers (Calibron, Flow MD and Brooks).		
square expansion coefficient		Prover square (area) expansion coefficient [(in ² /in ²)/°F]. Used to calculate the prover Ctsp.		
		Typical values are 1.92e-5 for 304 stainless steel, 1.77e-5 for 316 stainless steel, 1.16e-5 for carbon steel and 1.24e-5 for mild steel.		
Rod linear expansion	1000	Only applies for compact provers (Calibron, Flow MD and Brooks).		
coefficient		Piston rod linear expansion coefficient [(in/in)/°F]. Used to calculate the prover Ctsp.		
		Typical values are 8e-7 for Invar (applies for Brooks compact provers), 9.6e-6 for 304 stainless steel and 8.83e-6 for 316 stainless steel. 0 disables correction.		
Prover modulus of	1000	Modulus of elasticity [Psi*(in/in)]. Used to calculate the prover Ctsp.		
elasticity		Typical values are 3.0e7 for carbon / mild steel, 2.85e7 for stainless steel		
Prover reference temperature	1000	Reference temperature for Ctsp calculation. Typically 60 °F.		
Prover reference pressure	1000	Reference pressure for Cpsp calculation. Usually 0 psig.		
Detector configuration	1000	The application supports the following combinations of prover detector inputs signals.		

4-83

Chapter 4 - Configuration Proving

1: 1 common
(detectorThe start and stop detectors are combined in one common signal
input A)2: 2 inputs1 start detector (detector input A) and 1 stop detector (detector input C)3: 3 inputs1 start detector (detector input A) and 2 stop detectors (inputs C and D).
2 calibrated volumes need to be defined (volume A-C and volume A-D)4: 4 inputs2 start (inputs A and C) and 2 stop detectors (inputs B and D)
4 calibrated volumes need to be defined (volume A-C, A-D, B-C and B-D)

The input channel number for detector signals a, B, C and D are defined in display 'IO\Configuration\Digital IO assignments'. A <u>common</u> prove detector signal should be assigned to 'Detector input A'



Figure 3: Prover detector switches

Single detector	1000	Debounce time used for detector inputs
delay		Prove detectors switches are mechanical devices that may provide a bouncing signal causing the flow computer to abort the prove sequence when not debounced adequately. Therefore a proper debounce time (e.g. 0.2 seconds) has to be defined in case of a common detector input.
Prover volume 14	1000	Up to 4 calibrated prover base volumes [bbl].
		For provers with a single start and a stop detector only 'Volume 1' applies. In case of 3 detectors (1 start, 2 stop) two base volumes ('Volume 1' and 'Volume 2') apply and in case of 4 inputs all 4 volumes apply.
Selected prover	1000	Selects the in-use prover base volume (i.e, the pair of detectors used for proving).
volume		Only applies for 3 or 4 detector inputs. For 1 or 2 inputs 'Volume 1 (A-C)' will be used automatically. Reset to 'Volume 1 (A-C) when he selection is invalid.

Chapter 4 - Configuration Proving

Pre-travel	1000	Usually set to 0 [sec]			
delay time		The activation of the detector(s) will not be considered before this time has elapsed after start of the prove run.			
			eeds to travel upstream before the prove e downstream direction. A delay time larger than 0 ctors in the upstream direction.		
Travel time- out mode	1000		e-out limits are based on either specified time-out specified pre- and over-travel volumes.		
			ists for the actual flow rate. So at a low flow rate longer and for higher flow rate it will be shorter.		
Max. pre-	1000	Maximum time allowed for the spher	re / piston to activate the start detector switch.		
travel time		Used when 'Travel time-out mode' is	set to 'Time'		
Max. time between detectors	1000	Maximum time allowed for the sphere having activate the start detector sw	re / piston to activate the stop detector switch after itch		
uelectors		Used when 'Travel time-out mode' is	set to 'Time'		
Over-travel time-out		Time to wait after the sphere / piston has activated the stop detector and before the next command is issued. The next command depends on the type of prover.			
		Bi-directional pipe provers Uni-directional prover Calibron / Flow MD Brooks piston	Issue the next 4-way forward/reverse command Issue the next prover valve open command issue the next Prove Start command Lower the Prove Run command such that the		
			travels back in upstream direction		
		Used when 'Travel time-out mode' is	set to 'Time'		
Pre-travel volume	1000	Used to calculate the maximum time detector switch.	allowed for the sphere / piston to activate the start		
		Time [s] = Volume [bbl] / Actual flow	rate [bph] * 3600 * 1.25 (i.e. margin of 25%)		
		Used when 'Travel time-out mode' is	set to 'Volume'		
Over-travel volume	1000		er the sphere /piston has activated the stop nd is issued. The next command depends on the all travel time-out' for further details.		
		Time [s] = Volume [bbl] / Actual flow	rate [bph] * 3600 * 1.25 (i.e. margin of 25%)		
		Used when 'Travel time-out mode' is	set to 'Volume'		
Seal integrity	1000	Applies for bi-directional and unidired	tional provers only		

Chapter 4 - Configuration Proving

4-85

DI module		Medule number of the 'Drover value cool' digital input signal
		Module number of the 'Prover valve seal' digital input signal
		By default the 'Prover valve sealed' state is not used by proving logic. It is typically used to abort the prove sequence when the prover valve is not sealed while the sphere is between the detectors (i.e. in the calibrated volume. Corresponding logic can be configured as a 'Calculation' in Flow-Xpress.
Seal integrity DI channel	1000	Applies for bi-directional and unidirectional provers only
		Channel number of the 'Prover valve sealed' digital input signal
Prove start DO module	1000	Applies for Calibron, Flow-MD and unidirectional ball provers only
		Module number of the 'Prove start' digital output signal that is raised for each prove pass.
Prove start DO channel	1000	Applies for Calibron and Flow-MD compact provers only
		Channel number of the 'Prove start' digital output signal that is raised for each prove pass.
Plenum pressure	1000	Brooks compact prover only.
control		Enables or disables the control of the pressure in the plenum chamber
Plenum pressure	1000	Brooks compact prover only.
check timeout		Maximum allowable time for plenum pressure to be within control limits at start of prove sequence
Plenum pressure	1000	Brooks compact prover only.
constant R		The Plenum Pressure Constant R is used to calculate the plenum pressure needed to operate the Brooks compact prover .The calculation is as following:
		Plenum Pressure = (Prover Pressure / Plenum Constant R) + 60 psig
		Constant R depends on the size of the prover.
		8 inch 3.5 12 inch Mini 3.2
		12-inch 3.2
		18 inch 5
		24-inch 5.88
		34-inch 3.92 40-inch 4.45
Plenum pressure	1000	Brooks compact prover only.
control deadband		Deadband [%] applied on required plenum pressure to control the plenum pressure
		Actual plenum pressure < Required plenum pressure * (100 - Deadband) / 100

Chapter 4 - Configuration Proving			
		> issue the charge command	
		Actual plenum pressure >Required plenum pressure * (100 + Deadband) / 100 > issue the vent command	
Plenum	1000	Brooks compact prover only.	
pressure alarm deadband		If the actual plenum pressure deviates more from the required value than the alarm limit, then the prove sequence will be aborted.	
Prover orientation	1000	Brooks compact prover only.	
orientation		The orientation of the prover (horizontal or vertical) has to be taken into account for the calculation of the required plenum pressure.	
Run command DO	1000	Brooks compact prover only.	
module		Module number of the 'Prove run command' digital output signal	
Run command DO	1000	Brooks compact prover only.	
channel		Channel number of the 'Prove run command' digital output signal	
Piston upstream DI	1000	Brooks compact prover only.	
module		Module number of the 'Piston in upstream position' digital input signal	
Piston upstream DI	1000	Brooks compact prover only.	
channel		Channel number of the ' Piston in upstream position ' digital input signal	
Charge plenum DO	1000	Brooks compact prover only.	
module		Module number of the 'Charge plenum pressure' digital output signal	
Charge plenum DO	1000	Brooks compact prover only.	
channel		Channel number of the 'Charge plenum pressure' digital output signal	
Vent plenum DO module	1000	Brooks compact prover only. Module number of the 'Vent plenum pressure' digital output signal	
Vent plenum DO channel	1000	Brooks compact prover only. Channel number of the 'Vent plenum pressure' digital output signal	
Low nitrogen DI module	1000	Brooks compact prover only. Module number of the 'Low nitrogen level' digital input signal	
		This signal is not used by default. It could be used for alarming and to abort the prove sequence.	
Low nitrogen	1000	Brooks compact prover only.	

Chapter 4 - Configuration Proving

4-87

DI channel Channel number of the 'Low nitrogen level' digital input signal

Operational settings

Display \rightarrow Configuration, Proving, Operational settings

Maximum nr of runs	1000	The maximun the repeatabi	•	ove runs allowed to achieve sufficient consecutive runs within
Passes per runs	1000	Applies for co	mpact proving	
14115		The number o	of passes per ru	in in case of a compact prover (Calibron, Flow MD, Brooks).
		Typically set t	to 1 for pipe pro	overs
Required successful runs	1000	•	nber of consect ompleted succe	utive runs within the repeatability limit before the prove essfully.
Repeatability test method	1000	Achieving rep	eatability base	ity calculation is based on pulse count or on the meter factor. d on meter factor might be more difficult to achieve, because ds on the pulse count but also on the temperature, pressure,
		Repeatability	is calculated as	s (max - min) / max * 100%.
Run repeatability	1000	The method t	to check if suffi	cient consecutive runs are within the required repeatability limit.
mode		1: Static	•	equence is completed successfully when the 'Required successful formed consecutively within the 'Run repeatability fixed limit'.
		2. Dynamic		Required successful runs' are performed consecutively within ility limit that is in accordance with API 4.8 appendix A.
			App. A define	es the repeatability limit as a function of the number or runs.
			Nr of runs 3 4 5 6 7 8 9 10	Repeatability limit [%] 0.02 0.03 0.05 0.06 0.08 0.09 0.10 0.12
			Typically use	d for compact provers.

Repeatability 1000 The repeatability limit used when 'Run repeatability mode' is set to 'Fixed'

Chapter 4 - Configuration Proving

	Buration	
test fixed limit		
Double chronometry	1000	Determines whether or not double-chronometry method of pulse interpolation is applied in accordance with API MPMS 4.6.
		API requires that pulse interpolation is performed when lass than 10000 pulses are acquired within a single prover pass.
		This feature is typically enabled for compact provers and disabled for large volume pipe provers.
Auto- implement new MF	1000	Determines whether or not a new meter factor is implemented automatically at the end of a successful prove sequence, provided that the repeatability criteria are met and the meter factors tests have passed.
MF manual accept timeout	1000	The maximum allowable time to manually accept a new meter factor after the prove sequence has ended successfully, provided that the repeatability criteria are met and the meter factors tests have passed. If the operator does not accept the new meter factor within this time limit, then the new meter factor will be rejected automatically.

Stability check

Display → Co		
Initial stability check	1000	Determines whether or not the initial stability check is performed. When enabled, the prove sequence will not start before the initial stability check has passed successfully.
		During the initial stability check the following variables are monitored for the stability sample time (e.g. 30 seconds):
		Prover inlet temperature
		Prover outlet temperature
		Meter temperature
		Prover inlet pressure
		Prover outlet pressure
		Meter pressure
		Flow rate
		The initial stability check passes as soon as all the variables do not change more than their corresponding limit, during the required stability sample time (default 5 seconds).
Prove sequence stability	1000	Determines whether or not the deviation between the prover and meter temperature and pressure is checked during proving. The check is only performed when the sphere / piston is between the detectors (i.e. in the

Chapter 4 - Configuration Proving

check		calibrated volume).
Max. stabilization time	1000	The maximum time allowed for the initial stability check (default 30 seconds)
Stabilization sample time	1000	The sample time for the initial stability check
Temperature change limit	1000	The limit for the temperature to change during the sample time for the initial stability check
Pressure change limit	1000	The limit for the pressure to change during the sample time for the initial stability check
Flow rate change limit	1000	The limit for the flow rate to change during the sample time for the initial stability check
Max. temperature deviation prover/meter	1000	The maximum deviation limit between the prover temperature (average of inlet and outlet) and the meter temperature
Max. pressure deviation prover/meter	1000	The maximum deviation limit between the prover temperature (average of inlet and outlet) and the meter pressure

Meter factor tests

A number of tests is performed on each newly proved meter factor. The new factor will be rejected automatically if one or more tests should fail.

Display ightarrow Configuration, Proving, Meter factor test

Previous MF test	1000	The new meter factor will rejected if it deviates more from previous meter factor than the 'Previous MF deviation limit', provided that 'Previous MF test' is enabled.
Previous MF deviation limit	1000	Limit for the 'Previous MF test'
Historical avg MF test	1000	The application keeps track of the last 10 proved meter factors for each flow meter. When the 'Historical average MF test' is enabled, the new meter factor will rejected if it deviates more from average of the last 'Nr of hist MF avg' meter factors than the 'Hist avg MF deviation limit'
Historical avg MF	1000	Limit for the 'Historical average MF test'

Chapter 4 - Conf	Chapter 4 - Configuration Proving			
deviation limit				
Nr of historical MF avg	1000	Number of historical meter factors to be used for the 'Historical average MF test'		
Base MF test	1000	This test only applies if a meter factor <u>curve</u> is applied. The 'Base MF test' checks if difference between the proved meter factor and the 'meter factor determined from the meter factor curve at the proved flow rate' is not greater than 'Base MF deviation limit'.		
Base MF deviation limit	1000	Limit for the 'Base MF test'		

Prove report

The 'Prove report' display contains the settings that define the number of decimal places for the meter factor and the intermediate correction factors. The display also contains settings that determine if the API truncating and rounding rules are applied for the calculation.

 $\textit{Display} \rightarrow \textit{Configuration, Proving, Prove report}$

Meter factor decimal places	1000	The number of decimal places for the meter factor
API rounding proving	1000	Determines if the rounding and truncating rules of the API standard are applied or not.
Volume decimal places proving	1000	The number of decimal places used to round the metered and proved volumes.
Cts decimal places proving	1000	The number of decimal places used to round for the correction factor for the effects of temperature on the prover steel Ctsp
Cps decimal places proving	1000	The number of decimal places used to round for the correction factor for the effects of pressure on the prover steel Cpsp
Ctl decimal places proving	1000	The number of decimal places used to round for the correction factor for the effects of temperature on the liquid in the prover Ctl
Cpl decimal places proving	1000	The number of decimal places used to round for the correction factor for the effects of pressure on the liquid in the prover Cpl
CCF decimal places proving	1000	The number of decimal places used to round for the combined correction factor CCF.

4-90

Chapter 4 - Configuration Sampler control

Sampler control

The application supports one sampler by default. Additional samplers may have been added.

Display → Confi	guration	n, Sampling
Sampler control	1000	Determines whether the control of the sampler is enabled or not. Disabling control will inhibit the outputting of grab command (pulses).
Can selection control	1000	Control mode for can selection.
		0: Single can(no control signal for can selection available)1: Twin can(1 output used to switch between 2 cans)2: Multiple cans(up to 4 outputs for different product cans)
Sampled flow	1000	Used for Flow proportional sampling methods only.
		Determines which flow rate value is used to calculate the total sampled volume for the current sampling can. The first selection is 'Station' which applies for a sampler that is installed on the station inlet or outlet header.
Sampling method	1000	The method to determine the required volume between grabs, either flow- or time-proportional. A grab command (pulse output) is issued whenever this volume has been accumulated.
		 Flow (fixed value) Flow proportional method based on setting 'Volume between grabs fixed value'. This method does not consider the remaining can volume.
		2: Flow (estimated volume) Flow proportional method where the required volume between grabs is calculated from settings 'Expected total volume', the remaining can volume and the 'Grab size'
		3: Flow (batch volume) Flow proportional method where the required volume between grabs is calculated from the required 'Batch size' of the current batch (as defined in the batch stack),the remaining can volume and the 'Grab size'
		4: Time (fixed value) Time proportional method based on setting 'Time between grabs fixed value'. This method does not consider the remaining can volume.

5: Time (estimated end time)

Chapter 4 - Configuration Sampler control		
		Time proportional method with the time between grabs calculated from setting 'Expected end time for sampling', the remaining can volume and the 'Grab size'.
		6: Time (period) Time proportional method with the time between grabs calculated from setting 'Can fill period [hours]', the remaining can volume and the 'Grab size'.
Volume between	1000	Used when 'Sampling method' is 'Flow (fixed value)'
grabs fixed value		Volume that needs to be accumulated before the next grab command is raised.
Expected total volume	1000	Used when 'Sampling method' is 'Flow (estimated volume)'
		Estimated total volume to be sampled in order to fill the can.
Time between	1000	Used when 'Sampling method' is 'Time (fixed value)'
grabs fixed value		Grab commands (pulses) are issued at this interval period.
Expected end time for	1000	Used when 'Sampling method' is 'Time (estimated end time)'
sampling		Date and time that the sampler can should be filled to the 'Can target fill percentage'
Can fill period	1000	Used when 'Sampling method' is 'Time (period)'
		The total period over which the can needs to be filled.
Can volume	1000	Can storage capacity in [cc]
Grab size	1000	Volume per grab in [cc]
Minimum time between grabs	1000	Used to determine the maximum pulse output frequency. If more pulses are generated than the maximum frequency allows for, then pulses are accumulated in a reservoir.
Can target fill percentage	1000	The target level to fill the can. Used to switch over to the other can (if Auto-switch on van full enabled).
Can maximum fill percentage	1000	The maximum fill level of the can. If this level is reached sampling will be stopped.
Stop sampling on can full	1000	Stops sampling when either the can is full (for 'Single can' and 'Multiple can' mode) or in case of twin sampling both cans are full.
Auto-switch can on can full	1000	Only applies for 'Twin can' mode. Changes over the 'Selected can' output to the other can, provided that the other can is not full.

Chapter 4 - Configuration Sampler control

Not used when 'Sampling method' is 'Flow (batch volume)' or 'Time (estimated end time)'

In case the sampler provides a control signal to physically switch over to the other can, the 'Select can' value can be used in Calculation to set a corresponding flow computer digital output.

Stop sampler on batch end	1000	Stops the sampler if a batch end is given.
Auto-switch can on batch end	1000	Applies for 'Twin can' mode only. Switches to the other can if a batch end is given, so that the new batch starts using the other can.
Stop sampler on product change	1000	Stops the sampler when changing to the next product. Only applies for 'Multiple cans' mode.
Sampler overspeed alarm limit	1000	In case the number of pulses accumulated in the reservoir reaches this limit, the sampler overspeed alarm is raised
Max. number of outstanding samples	1000	The maximum number of pulses buffered in the reservoir. Additional pulses will be lost (raises the 'Grabs lost' alarm).
Sample pulse output module	1000	The module to which the pulse output signal is physically connected
Sample pulse output channel	1000	The channel number of the pulse output
Sample pulse output duration	1000	The duration of the sample pulse [s]
Can fill indication method	1000	 Number of grabs To be used in case no physical signal is available) Digital input Sampler provides a digital input that indicates that can is full. The can fill level will be determined from the number of grabs Analog input Sampler provides an analog input that indicates the can fill level (0-100%).
Can 1/2 fill indication module	1000	The module to which the fill indication signal of can 1/2 is physically connected

Chapter 4 - Configuration Valve control

Can 1/2 fill indication channel	1000	The channel number of the fill indication signal of can 1/2. If 'Can fill indication method' is 'digital input' this is the digital channel number (1-16). If 'Can fill indication method' is 'analog input' this is the analog input channel (1-6)
Twin can selection digital output module	1000	Applies for 'Twin can' mode only. The module to which the can selection output is physically connected
Twin can selection digital output channel	1000	Applies for 'Twin can' mode only. The channel number of the can selection output (digital output 1-16)
Can 1/2/3/4 product number	1000	Applies for 'Multiple cans' mode only. The actual product number (116) to be used for the can selection
Can 1/2/3/4 digital output module	1000	Applies for 'Multiple cans' mode only. The module to which the can selection output is physically connected
Can 1/2/3/4 digital output channel	1000	Applies for 'Multiple cans' mode only. The channel number of the can selection output (digital output 1-16)

Valve control

By default the application provides control of the following valves:

- Run inlet valve (one per meter run)
- Run outlet valve (one per meter run)
- Run to prover valve (one per meter run)
- Prover 4-way valve (only applies for a bi-directional prover)
- Prover outlet valve

The control logic is based on 2 input signals for the valve position (Open and Closed) and 1 common or 2 separate output signals for the valve open and close commands.

The valve position is determined as following:

- If no inputs are available, then the position is determined from the latest issued valve command.
- If a single input is available (for either open or closed position), then the valve is considered to be in the opposite position in case the position signal is OFF
- If two inputs are available, then the position is 'Moving' when both inputs are OFF and 'Faulty' when both inputs are ON.

Chapter 4 - Configuration Valve control

The I/O signals may be digital signals that are hardwired to the Flow-X or external values communicated to or calculated by the flow computer.

Separate open and close commands are available for manual and auto modes of operations. Manual mode is meant for direct control by the operator, automatic mode is meant for logic.

Open / close commands are ignored when the valve is already in the required position. A time-out limit is applied on the valve travel time. The travel timer is reset at start of movement or when the required position has been reached. A failure alarm is generated when the travel timer has reached the limit and also when the valve looses its required position

Permissive flags are available to interlock the opening or closing of valves. The permissive flags are ON by default and can be set through user-defined *Calculations*.

Display \rightarrow Configuration, Valve control

The following settings apply for each individual valve

Control signals	1000	0: no control
		1: Two pulsed outputs 2 separate outputs for open and close commands. The outputs stay ON for the 'Minimum activation time' as defined in display 'IO\Configuration\Digital IO settings'
		2: Two maintained outputs 2 separate outputs for open and close commands. The outputs remain ON until the valve has reached its position
		 3: One output - ON is open 1 output to open the valve. At the valve open command the output stays ON for the 'Minimum activation time' as defined in display 'IO\Configuration\Digital IO settings'.
		4: One output - ON is close 1 output to close the valve. At the valve close command the output stays ON for the 'Minimum activation time' as defined in display 'IO\Configuration\Digital IO settings'
Position signals	1000	0: no inputs
		1: Two inputs 2 separate inputs for open and close commands.
		2: One input (open position) 1 input that is ON when the valve is in the open or forward position, else OFF.
		3: One input (closed position) 1 input that is ON when the valve is in the closed or reverse position, else OFF.

Chapter 4 - Configuration Flow control

Travel timeout period	1000	Maximum allowed time [s] for the valve to move to the required position. The valve timeout alarm is raised when valve does not reach the required position within this limit.
Position DI module	1000	Module to which the position signal is physically connected
Position DI channel	1000	Digital channel number of the position signal
Control DO module	1000	Module to which the control output signal is physically connected
Control DO channel	1000	Digital channel number of the control output signal

Flow control

The application supports the PID control of Flow Control Valves with additional pressure control. Primary control is on flow. When the pressure gets above / below a configurable limit, then the control loop reverts to pressure control to ensure a minimum delivery pressure or a maximum back pressure.

A permissive flag is variable for each FCV. The permissive flag is ON by default and can be controlled through user-defined *Calculations*.

Display \rightarrow Configuration, Flow control

The following settings apply for each individual FCV

Flow control - Input mode	1000	Actual flow rate value	used for PID Control.
		0: None 1: Gross Volume 2: Mass	: PID Control is disabled.
		3: Custom	: Custom value is used as process value
Flow control - Proportional	1000	Controller output = Pr	oportional gain * Actual error.
Gain		Proportional Gain a= 2	100 / Proportional Band
Flow control - Integral gain	1000	Integral gain = 1 / [Repertue of the per 50 seconds.	epeats per sec], e.g. value of 0.02 means 1 repeat
Flow control – Low scale value	1000	Process / setpoint value	ue that corresponds to 4 mA.
		Units same as process	value.
Flow Control –	1000	Process / setpoint value	ue that corresponds to 20 mA.

4-97

Chapter 4 - Configuration Flow control

High scale value		Units same as process value.
Flow control - Reverse mode	1000	Select 'Disabled' if flow rate drops when valve closes. Select 'Enabled' when flow rate drops when valve opens.
Pressure Control	1000	When enabled the pressure will not be allowed to rise or drop below the limit.
Pressure Limit Mode	1000	 Maximum Pressure will not be allowed to rise above the limit Minimum Pressure will not be allowed to drop below the limit.
Pressure Limit Value	1000	The pressure will not be allowed to drop below or rise above this limit, depending on the Pressure limit mode'. Only used when 'Pressure control' is enabled.
Pressure Control	1000	Controller output = Proportional gain * Actual error.
Proportional Gain		Proportional Gain a= 100 / Proportional Band
Pressure Control Integral gain	1000	Integral gain = 1 / [Repeats per sec], e.g. value of 0.02 means 1 repeat per 50 seconds.
Pressure Control	1000	Process / setpoint value that corresponds to 4 mA.
Low scale value		Units same as process value.
Pressure Control	1000	Process / setpoint value that corresponds to 20 mA.
High scale value		Units same as process value.
Pressure Control Reverse mode	1000	Select 'Disabled' if pressure drops when valve closes. Select 'Enabled' when pressure drops when valve opens.
Analog output module	1000	Module to which the analog output signal is connected.
Analog output channel	1000	Channel number for the analog output signal.
Bumpless transfer	1000	Controls bumpless transfers between auto and manual mode and also between 'Flow control' and 'Pressure control'
Control output minimum limit	1000	The control output % will not be allowed to go below this limit
Control output maximum limit	1000	The control output % will not be allowed to go above this limit
Control output downwards slew rate [%/sec]	1000	The control output will not be allowed to decrease faster than this limit. O disables this function

Control output upwards slew rate [%/sec]	1000	The control output will not be allowed to increase faster than this limit. O disables this function
Flow Control - Downwards setpoint clamp rate	1000	The in-use flow setpoint will not be allowed to decrease faster than this limit per second. O disables this function
Flow Control - Upwards setpoint clamp rate	1000	The in-use flow setpoint will not be allowed to increase faster than this limit per second. 0 disables this function
Idle output %		Value used for control output when the PID permissive flag is not set

Chapter 4 - Configuration Flow control

This page is left blank intentionally.

Chapter 5 - Maintenance mode Flow control

Chapter 5 - Maintenance mode

Maintenance mode is a special mode of operation intended for testing the flow computer functionality, typically its calculations.

Maintenance mode is enabled and disabled for each meter run separately.

Maintenance mode is the same as normal operation mode except that in Maintenance Mode all the custody transfer totals are inhibited. Instead flow is accumulated in separate Maintenance totals.

Furthermore analog outputs are forced to 4 mA and pulse outputs are inhibited in maintenance mode.

A permissive flag is used to enter and exit maintenance mode. By default the flag is always 1, i.e. it is always permitted to enter/exit maintenance mode. However the permissive flag may be controlled by custom-made logic through 'Calculations'. E.g. entering/exiting maintenance mode to is only permitted when the meter is inactive.

To enable maintenance mode go to the following display.

 $Display \rightarrow Configuration, Run, Maintenance mode$

 Maintenance
 1000
 Enables maintenance mode provided that switch permissive flag is set.

 mode
 enabled

Chapter 5 - Maintenance mode Flow control

(This page is left blank intentionally.)

Chapter 6 - Flow computations

This chapter specifies the flow calculations performed by the Liquid US Customary application. The different parameters are accessible through the display menu.

Calculations in compliance with a measurement standard, such as API-2540 and GPA TP-27, are not detailed in full in this manual. Please refer to the standards for more details on these calculations.

API Petroleum Measurement Tables

The first version of the API Petroleum Measurement Tables was published in **1952**. In those days measurement readings were taken manually and the tables were used to convert the observed density or gravity at the observed temperature to the value at the reference temperature. So the table values were the actual standard.

The 1952 Tables consists of 58 tables containing all kind of correction and conversion factors used in the measurement of hydrocarbon liquids. Each table deals with a particular conversion of units, correction of density, or correction of volume. The 1952 tables that have to do with the conversion of density and volume are: 5, 6, 23, 24, 53 and 54.

Table 5, 6, 23 and 24 convert density or volume to or from to a reference temperature of 60° F, while tables 53 and 54 refer to 15°C.

In **1980** a complete new set of tables was published together with computer routines to allow electronic devices to automatically calculate the volume conversion factors and API gravity / (relative) density at the reference temperature. Back then most electronic devices were not capable of performing double-precision floating point calculations, so the standard prescribed all kind of rounding and truncating rules to make sure that the calculations would always provide the same result. For the 1980 version the calculation procedures are the standard rather than the table values.

In the 1980 version, which is also referred to as **API-2540**, the tables are divided into 3 product groups and a letter designation was used to distinguish between the sub-tables. "A" was used for crude oil, "B" for refined products and "C" for special applications. The 1980 tables, however, did not cover the LPGs and NGLs density ranges and the 1952 Tables were left valid for these products. Furthermore, the lubricating oil tables (designated as "D") were not complete at the time of the printing in 1980 and were released two years later. As opposed to the A, B and C tables no implementation procedures were defined for the D tables.

In 1988 the Institute of Petroleum released its Paper No. 3 with tables 59 and 60 that are based on a reference temperature of 20^oC.

This resulted in the following Petroleum Measurement Tables dealing with the conversion of volume and density to and from a reference temperature.

Number	Title
5	API Gravity Reduction to 60°F
6	Reduction of Volume to 60°F Against API Gravity at 60°F
23	Reduction of Observed Specific Gravity to Specific Gravity 60/60°F
24	Reduction of Volume to 60o F Against Specific Gravity 60/60ºF
53	Reduction of Observed Density to Density at 15°C

54	Reduction of Volume to 15 ^o C Against Density at 15 ^o C
59	Reduction of Observed Density to Density at 20°C
60	Reduction of Volume to 20°C Against Density at 20°C

In **2004** the API MPMS 11.1 1980 tables were superseded by a new set of tables primarily for the following reasons:

- API 11.1:2004 includes the correction for both temperature <u>and</u> pressure in one and the same algorithm
- Taken into account the progress in electronics (and for other reasons) the complex truncating and rounding rules were abandoned. Instead the calculation procedures use double-precision floating point math. The input and output values are still rounded in order to obtain consistent results.
- The convergence methods for the correction of observed density to base density have been improved.
- On-line density measurement by densitometers became common practice, requiring the pressure and temperature correction to be incorporated in one ands the same procedure
- The tables are extended in both temperature and density to cover lower temperatures and higher densities.
- The previous standard used a significant digit format which resulted in 4 or 5 decimal places depending on whether the observed temperature was above or below the reference temperature. The new standard prescribes 5 decimal places if or both cases.
- The IP paper No. 3 tables were added to accommodate conversion to 20°C.

Tables for lubricating oils including the implementation procedures are now part of the standard.

Volume correction for pressure

The API MPMS 11.1:1980 Tables only cover the correction for temperature. The correction for pressure was published in API MPMS standards 11.2.1 and 11.2.2.

The correction for pressure is to the atmospheric pressure or, for products within the lower density range, to the equilibrium vapor pressure.

To calculate the equilibrium vapor pressure an Addendum was added to API MPMS 11.2.2. This addendum is also known as **GPA TP-15** (1988). In September 2007 the addendum was replaced by a new API standard 11.2.5 and at the same time GPA TP-15 (1988) was updated with a new 2007 revision.

NGL and LPG tables

For NGL and LPG products volume correction tables 24E and 23E (at 60 °F) were published in **GPA TP-25** (1988), so the letter 'E" was used to distinguish the tables from the related API MPMS A, B, C and D tables.

GPA TP-25 has been superseded by **GPA TP-27** / API MPMS 11.2.4 (2007), which includes tables 53E, 54E, 59E and 60E to convert to 15°C and 20°C as well. All text from TP-25 is included without technical change, so TP-25 is still viable for conversion to and from 60 °F.

Overview of hydrocarbon liquid conversion standards

ASTM-IP Petroleum Measurement Tables, Historical Edition, 1952

Chapter 6 - Flow computations API Petroleum Measurement Tables

 API MPMS Chapter 11.1 - 1980* (Pressure VCFs for Generalized Crude Oils, Refined Products, and Lubricating Oils): Historical; Published in 14 separate volumes

Also known as

- API Standard 2540 (API-2540)
- ASTM D1250
- IP 200
- * In 1982 chapters XIII and XIV were published containing tables 5D, 6D, 53D and 54D for lubricating oils.
- API MPMS Chapter 11.1 2004 (Pressure & Pressure VCFs for Generalized Crude Oils, Refined Products and Lube Oils)
- API MPMS Chapter 11.2.1- 1984 (Compressibility Factors for Hydrocarbons: 0-90°API): Historical: now incorporated into Chapter 11.1-2004
- API MPMS Chapter 11.2.1M- 1984 (Compressibility Factors for Hydrocarbons: 638-1074 lb/ft3): Historical: now incorporated into Chapter 11.1-2004
- API MPMS Chapter 11.2.2 1984 (Compressibility Factors for Hydrocarbons: 0.350-0.637 Relative Density and –50°F to 140°F)
- API MPMS Chapter 11.2.2M 1986 (Compressibility Factors for Hydrocarbons: 350-637 lb/ft3 Density (15°C) and -46°C to 60°C)
- API MPMS Chapter 11.2.2A 1984 (Addendum to Correlation of Vapor Pressure Correction for NGL): Superseded by Chapter 11.2.5
- API Publication/GPA TP-25/ASTM Publication (Pressure Correction for the volume of Light Hydrocarbons – Tables 24E and 23E: Superseded by API MPMS Chapter 11.2.4

GPA TP-25 was published in 1998 and replaced the 1952 tables 23, 24 for Light Hydrocarbon Liquids and GPA Technical Publication TP-16, which were previously used for volumetric measurement of LPG.

- API MPMS Chapter 11.2.4 2007 / GPA TP-27 / ASTM Publication (Pressure Correction for the Volume of NGL and LPG – Tables 23E, 24E, 53E, 54E, 59E, 60E): Supersedes GPA TP-25
- API MPMS Chapter 11.2.5 2007 / GPA TP-15 / ASTM Publication (A Simplified Vapor Pressure Correlation for Commercial NGLs): Supersedes Addendum to Chapter 11.2.2 (11.2.2A)
- IP No. 3 1988 (Energy Institute (formerly Institute of Petroleum), Petroleum Measurement Paper No 3 Computer Implementation Procedures for Correcting Densities and Volumes to 20 C. Superseded by IP No.3 - 1997
- IP No. 3 1997 (Energy Institute (formerly Institute of Petroleum), Petroleum Measurement Paper No 3 Computer Implementation Procedures for Correcting Densities and Volumes to 20 C. Supersedes IP No.3 - 1988
- ISO 91-1 1982 Petroleum measurement tables Part 1: Tables based on reference temperatures of 15 °C and 60 °F. Superseded by ISO 91-1 1992.
- ISO 91-1 1992 Petroleum measurement tables Part 1: Tables based on reference temperatures of 15 °C and 60 °F. Supersedes ISO 91-1 1982.
- ISO 91-2 1991 Petroleum measurement tables Part 2: Tables based on reference temperatures of 20 °C

OIML R 63 - 1994 Petroleum measurement tables

Overview of the functions

The following table lists the volume conversion functions for hydrocarbon liquids as provided by the Liquid USC application

Function	Pressure correction	Pressure correction	Input	Output
Crude Oils, Refine	ed Products and Lubr	icating Oils (API 19	52 / API 11.1:1980 / AP	I-2540)
API_Table5 (1952)	API 1952 Table 5	API 11.2.1:1984	RD (T,P)	RD (60ºF, Pe)
API_Table6 (1952)	API 1952 Table 6	API 11.2.1:1984	RD(60ºF, Pe)	RD (T, P)
API_Table23 (1952)	API 1952 Table 23	API 11.2.1:1984	RD (T, P)	RD (60ºF, Pe)
API_Table24 (1952)	API 1952 Table 24	API 11.2.1:1984	RD (60ºF, Pe)	RD (T, P)
API_Table5 (1980)	API 11.1:1980 Tables 5A, 5B and 5D	API 11.2.1:1984	°АРІ (Т, Р)	°API (60ºF, Pe)
API_Table6 (1980)	API 11.1:1980 Tables 6A, 6B and 6D	API 11.2.1:1984	°API (60ºF, Pe)	°API (T <i>,</i> P)
API_Table23 (1980)	API 11.1:1980 Tables 23A and 23B	API 11.2.1:1984	RD (T, P)	RD (60ºF, Pe)
API_Table24 (1980)	API 11.1:1980 Tables 24A and 24B	API 11.2.1:1984	RD (60ºF, Pe)	RD (T <i>,</i> P)

Crude Oils, Refined Products and Lubricating Oils (API MPMS 11.1:2004)

API_Table5 (2004)	API 11.1:2004	API 11.1:2004	°API (T, P)	°API (60ºF, 0
				psig)
API_Table6 (2004)	API 11.1:2004	API 11.1:2004	°API (60ºF, 0 psig)	°API (T, P)
API_Table23 (2004)	API 11.1:2004	API 11.1:2004	RD (T, P)	RD (60ºF, 0
				psig)
API_Table24 (2004)	API 11.1:2004	API 11.1:2004	RD (60ºF <i>,</i> 0 psig)	RD (T, P)

NGL and LPG (API 11.2.4)

API_Table23E	API 11.2.4: 2007 Table 23E	API 11.2.2:1986 GPA TP-15:1988 GPA TP-15:2007	RD (T, P)	RD (60ºF, Pe)
API_Table24E	API 11.2.4: 2007 Table 24E	API 11.2.2:1986 GPA TP-15	RD (60ºF, Pe)	RD (T, P)

Table 1 : Supported API MPMS standards

Hydrometer Correction

The API MPMS 11.1 1980 Standard (API-2540) assumes that the API gravity or relative density is observed with a glass hydrometer. Therefore a correction may be applied for the change of volume of the glass hydrometer with temperature.

The hydrometer correction applies for tables 5A, 5B, 23A and 23B.

The 2004 standard does not include a correction for a glass hydrometer.

API-2540 Input Data Limits

API MPMS 11.1:1980 (API 2540) is based on published data that lie within the so-called 'Data' range. The other table values were obtained from extrapolation and lie within the 'Extrapolated' range. It is recommended not to use API-2540 outside the 'Data' and 'Extrapolated' ranges.

For the lubricating oil tables no difference is made between data that is table values that are based on published data and table values that are determined by extrapolation.

Range	API Gravity	Relative Density	Density	Pressure
	[∘API]	[-]	[lb/ft3]	[∘F]
Data Range	0 40	1.0760 0.8250	1075.0 824.0	0 250
	40 50	0.8250 0.7795	824.0 778.5	0 200
	50 55	0.7795 0.7585	778.5 758.0	0 150
Extrapolated Range	0 40	1.0760 0.8250	1075.0 824.0	250 300
	40 50	0.8250 0.7795	824.0 778.5	200 250
	50 55	0.7795 0.7585	778.5 758.0	150 200
	55 100	0.7585 0.6110	758.0 610.5	0 200
Applies for:	Table 5A Table 6A	Table 23A	Table 24A	Table 5A Table 6A Table 23A Table 24A

Table 2: Table A input data limits for API MPMS 11.1:1980 (API 2540)

Range	API Gravity	Relative Density	Density	Pressure
	[°API]	[-]	[lb/ft3]	[°F]
Data Range	0 40	1.0760 0.8250	1075.0 824.0	0 250
	40 50	0.8250 0.7795	824.0 778.5	0 200
	50 85	0.7795 0.6535	778.5 653.0	0 150
Extrapolated Range	0 40	1.0760 0.8250	1075.0 824.0	250 300
	40 50	0.8250 0.7795	824.0 778.5	200 250
	50 85	0.7795 0.6535	778.5 653.0	150 200
Applies for:	Table 5B Table 6B	Table 23B	Table 24B	Table 5B Table 6B Table 23B Table 24B

Table 3: Table B input data limits for API MPMS 11.1:1980 (API 2540)

Range	API Gravity [°API]	Relative Density [-]	Density [lb/ft3]	Pressure [°F]
Data Range	-1045	0.81.165	8001164	0 300
Applies for:	Table 5D Table 6D	Table 23D* Table 24D*	Table 53D Table 54D	Table 5D Table 6D Table 23D* Table 24D*

* Values derived from Table 5D/6D

Table 4: Table D input data limits for API MPMS 11.1:1982

API-2540 - Rounding and truncating rules

For each table API Standard 2540 specifies an explicit 'Calculation Procedure' that includes the rounding and truncating of all the input, intermediate and output values. The 'Calculation Procedure' is considered to be the standard rather than the table values or a set of equations.

The function provides the option to either apply the full API rounding and truncating requirements or to perform the calculation procedure without any rounding and truncating being applied.

For tables 6A, 6B, 24A and 24B the standard makes a distinction between computational and table values for the calculated VCF. The table values are always rounded to 4 decimal places, Whereas the computational values has 4 decimal places when the VFC >=1 and 5 decimal places when the VCF < 1.

When API rounding is enabled the convergence limit is set to the limit value as specified in the standard. When the API rounding is disabled the convergence limit is set to 0.00001 lb/ft3 to obtain highest precision.

Range	Density	Pressure	Pressure
Crude Oil	610.61163.5 lb/ft3 @ 60°F 10010 API @ 60°F 0.611201.16464 RD @ 60°F	-58302 °F	01500 psig
Refined products	610.61163.5 lb/ft3 @ 60°F 10010 API @ 60°F 0.611201.16464 RD @ 60°F	-58302 °F	01500 psig
Lubricating oils	800.91163.5 lb/ft3 @ 60°F 4510 API @ 60°F 0.801681.1646 RD @ 60°F	-58302 °F	01500 psig

API-11.1:2004 Limits

Table 5: API-11.1: 2004 input data limits

API constants

For the tables in <u>US customary units</u> the following constants apply (both for the 1980 and the 2004 tables):

Flow -X Liquid USC Application Manual

Chapter 6 - Flow computations Volume Correction factor CTL

Product	API Table	КО	K1	К2
Crude oil	А	341.0957	0.0	0.0
Gasoline	В	192.4571	0.2438	0.0
Transition area	В	1489.0670	0.0	-0.00186840
Jet fuels	В	330.3010	0.0	0.0
Fuel oils	В	103.8720	0.2701	0.0
Lubricating oils	D	0.0	0.34878	0.0

Table 6: API-11.1 constants

Volume Correction factor $C_{\tau L}$

The volume correction factor for temperature Ctl is determined based on the selected 'Density conversion method' (refer to display 'Configuration\Run (or Station)\Product').

 $C_{TL} = \exp^{(\alpha_T \times \wedge T \times [1 + (0.8 \times \alpha_T \times \wedge t)]}$

Equation 6-1: Volume Correction Factor C_{TL}

 $\alpha_{T} = \frac{K_{0} + K_{1} \times \rho_{STD} + K_{2} \times \rho_{STD}^{2}}{\rho_{STD}^{2}}$

Equation 6-2: Tangent thermal expansion coefficient α_T

Where:

C _{TL}	Volume Correction Factor	[-]
α_{T}	Tangent thermal expansion coefficient per	
	°F at reference temperature	
۸T	Reference temperature – meter (flowing)	[°F]
Δ1	temperature	
ρ_{STD}	Standard density	[lbm/scf]

Volume Correction factor C_{PL}

The correction for pressure was published in API MPMS standards 11.2.1 and 11.2.2. The correction for pressure is to the atmospheric pressure or, for products within the lower density range, to the equilibrium vapor pressure.

To calculate the equilibrium vapor pressure for NGL/LPG an Addendum was added to API MPMS 11.2.2. This addendum is also known as **GPA TP-15** (1988). In September 2007 the addendum was replaced by a new API standard 11.2.5 and at the same time GPA TP-15 (1988) was updated with a new 2007 revision.

Equation 6-3: Volume Correction Factor C_{PL}

Where:

- C_{PL} Volume correction factor for pressure
- P Line Pressure

psig

-

- Pe Equilibrium Vapor Pressure (EVP)
- F Compressibility Factor as calculated with the selected API standard

Density calculations

The density value depends on the type of fluid and the temperature and pressure conditions. The following fluid density related properties are distinguished within the application:

Observed density	Density at the corresponding density input conditions
Meter density	Density at the flow meter conditions
Standard density	Density at the reference conditions

The actual calculations that are used to calculate these properties depend on the way that the observed and standard density are determined, which is controlled through configuration settings 'Standard density input type' and 'Observed density input type'. Refer to section/display 'Configuration, Run, Run setup" or, in case of product definition on station level, "Configuration, Overall setup, Overall setup" for more information on these settings.

In case the observed density is determined by a densitometer, then it is calculated according section 'Densitometer calculations'

The standard density is either calculated from the observed density based on the selected density conversion method or is a direct input value that is set manually through the operator interface or remotely via a communications link.

The meter density (or flowing density) is the density at the temperature and pressure conditions at the flow meter and is calculated from the standard density, and the Ctl and Cpl factors.

 $\rho_{F} = \rho_{STD} \times C_{TL} \times C_{PL}$

Equation 6-4: Meter density calculation

Where:

ρ_{F}	Meter density (flowing density)	lbm/cf
ρ_{STD}	Standard density	lbm/scf
Ctl	Ctl factor	
Cpl	Cpl factor	

The relationship between the standard density and the API gravity is as follows:

Chapter 6 - Flow computations Densitometer calculations

$$\rho_{\text{STD}} = \frac{141.5 \times \rho_{\text{H}_2\text{O}}}{\text{API}_{\text{STD}} + 131.5}$$

Equation 6-5: Standard density calculation

 $\begin{array}{ll} \rho_{H2O} & \text{Density of water at reference temperature} & [g/cc] \\ \text{API}_{\text{STD}} & \text{API gravity at reference temperature} \end{array}$

The relationship between the relative density and the standard density is as follows:

 $RD_{STD} = \frac{\rho_{STD}}{\rho_{H2O}}$

Equation 6-6: Relative density calculation

RD _{STD}	Standard relative density / specific gravity	[-]
ρ_{STD}	Standard density	[g/cc]
ρ_{H2O}	Density of water at reference temperature	[g/cc]

Densitometer calculations

The flow computer supports the following type of densitometers:

- Solartron
- Sarasota
- UGC UGC
- Densitrak

Solartron densitometers

The flow computer provides the option to calculate the density from a frequency input signal provided by a Solartron densitometer and to correct it for temperature and velocity of sound effects

_

 $\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$

Equation 6-7: Uncorrected density (Solartron)

Where:

- $\begin{array}{ll} \rho_i & \mbox{The uncorrected density} & \mbox{Ib/ft3} \\ \mbox{K0} & \mbox{Obtained from the calibration certificate} & \end{array}$
- K1 Obtained from the calibration certificate -
- K2 Obtained from the calibration certificate
- τ The time period in μs μs

$$\rho_{t} = \rho_{i} \cdot \left[1 + K18 \cdot \left(t - t_{R}\right)\right] + K19 \cdot \left(t - t_{R}\right)$$

Equation 6-8: Density corrected for temperature (Solartron)

Chapter 6 - Flow computations

6-111

Where:

ρ_t	The density corrected for temperature	lb/ft3
K18	Obtained from the calibration certificate	-
K19	Obtained from the calibration certificate	-
t	The line temperature	°F
t _R	The reference temperature	°F

$$\rho_{PT} = \rho_t \left[1 + (K_{20} \times P_f) + (K_{21} \times P_f) \right]$$

$$K_{20} = K_{20A} + (K_{20A} \times P_f)$$

$$K_{21} = K_{21A} + (K_{21B} \times P_f)$$

Equation 6-9: Density corrected for Pressure (Solartron)

Where:

ρ_t	The density corrected for temperature	lb/ft3
K ₁₈	Obtained from the calibration certificate	-
K ₁₉	Obtained from the calibration certificate	-
K _{20A}	Obtained from the calibration certificate	-
K _{20B}	Obtained from the calibration certificate	-
K _{21A}	Obtained from the calibration certificate	-
K _{21B}	Obtained from the calibration certificate	-
P _f	Pressure at the densitometer	psig

Sarasota densitometers

$$\rho_{C} = d_{0} \quad \frac{\tau \tau_{C}}{\tau_{C}} \quad 2 + K \quad \frac{\tau \tau_{C}}{\tau_{C}}$$
$$\tau_{C} = \tau_{0} + t_{COEF} \cdot (t - t_{CAL}) + p_{COEF} \cdot (p - p_{CAL})$$

Equation 6-10: Corrected density (Sarasota)

Where:

ρ _c	The corrected density	lb/ft3
d ₀	Obtained from the calibration certificate	lb/ft3
τ0	Obtained from the calibration certificate	μs
К	Obtained from the calibration certificate	-
d ₀	Obtained from the calibration certificate	-
p_{COEF}	Obtained from the calibration certificate	μs/psi
t_{COEF}	Obtained from the calibration certificate	µs∕°F
t	Line temperature	°F
t _{CAL}	Reference temperature	°F
р	Line temperature	psig
p_{CAL}	Reference pressure	psig
τ_{c}	Time periodic input corrected for temperature and pressure	μs
τ	The time period in μ S	μs

Chapter 6 - Flow computations

UGC densitometers

$$\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$$

Equation 6-11: Uncorrected density (UGC)

Where:

- ρ_i The uncorrected density
- lb/ft3

-

-

μs

- K0 Obtained from the calibration certificate
- K1 Obtained from the calibration certificate
- K2 Obtained from the calibration certificate
- au The time period in μ S

$$\rho_{t} = \rho_{i} + \left[K_{P1} + K_{P2} \cdot \rho_{i} + K_{P3} \cdot \rho_{i}^{2}\right] \cdot \left(p - p_{R}\right) + \left[K_{T1} + K_{T2} \cdot \rho_{i} + K_{T3} \cdot \rho_{i}^{2}\right] \cdot \left(t - t_{R}\right)$$

Equation 6-12: Corrected density (UGC)

Where:

ρ_t	The density corrected for temperature and pressure	lb/ft3
K _{P1}	Obtained from the calibration certificate	-
K _{P2}	Obtained from the calibration certificate	-
K _{P3}	Obtained from the calibration certificate	-
K _{T1}	Obtained from the calibration certificate	-
K _{T2}	Obtained from the calibration certificate	-
K _{T3}	Obtained from the calibration certificate	-
t	The line temperature	°F
t _R	The reference temperature	°F
р	The line pressure	psig
p _R	The reference pressure	psig

Densitrak densitometers

 $\rho_i = K0 + K1 \cdot \tau + K2 \cdot \tau^2$

Equation 6-13: Uncorrected density (Densitrak)

Where:

ρ_i	The uncorrected density	lb/ft3
К0	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
К2	Obtained from the calibration certificate	-
τ	The time period in μ S	μs

 $\rho_t = \rho_i + \kappa_{Tv} \cdot \rho_i \cdot (t - t_R) + \kappa_{TO} \cdot (t - t_R) + \kappa_{T1} \cdot (t - t_R)^2$

Equation 6-14: Density corrected for temperature (Densitrak)

Where:

ρ_t	The density corrected for temperature	lb/ft3
Κ _{τν}	Obtained from the calibration certificate	-
K _{τ0}	Obtained from the calibration certificate	-
K_{T1}	Obtained from the calibration certificate	-
t	The line temperature	°F
t _R	The reference temperature	°F

 $\rho_{pt} = \rho_t + K_{Pv} \cdot \rho_t \cdot p + K_{P0} \cdot p + K_{P1} \cdot p^2$

Equation 6-15: Density corrected for temperature (Densitrak)

Where:

$ ho_{pt}$	The density corrected for temperature and pressure	lb/ft3
K _{Pv}	Obtained from the calibration certificate	-
K _{P0}	Obtained from the calibration certificate	-
K _{P1}	Obtained from the calibration certificate	-
р	The line pressure	psig

Viscosity correction

When enabled a correction for product viscosity is applied on the volume flow rate indicated by the flow meter.

A different correction is applied for a (helical) turbine and a positive displacement flow meter.

Turbine flow meter:

LCF = A + B*x + C*x^2 + D*x^3 + E*x ^4 + F*x^5 + G*x^6

Equation 6-16: Viscosity correction factor for turbine flow meters

Positive displacement flow meter:

 $LCF = A + (x^{C})/B$

Equation 6-17: Viscosity correction factor for positive displacement flow meters

where:

LCF	Viscosity correction factor	[-]
х	Qi / Vis	
Qi	Indicated volume flow rate	[bbl/hr]
Vis	In-use product viscosity	[cSt]
AF	Correction constants, usually provided by	
	the flow meter manufacturer	

Chapter 6 - Flow computations Correction for Sediment and Water (BS&W)

Correction for Sediment and Water (BS&W)

C 1	BSW
C _{BSW} = 1	100

Equation 6-18: Volume Correction Factor C_{BSW}

Where:

- C_{BSW} Correction for the base sediment and water content in the fluid.
- BSW Percentage of sediment and water content in the fluid. [%]

Flow Rate for Volumetric Flow Meters

The following equations apply for any flow meter that provides a volumetric quantity as a pulse input signal or as a smart signal (communications, HART or analog input)

It typically applies for the following type of meters:

- Turbine flow meter
- Positive displacement (PD) flow meter
- Ultrasonic flow meter providing a pulse signal

Indicated volume flow rate

For a flow meter that provides a pulse signal the meter K-factor is applied to obtain the flow rate from the pulse frequency.

Qi = f / MKF * 3600

Equation 6-19: Indicated volume flow rate

where:

Qi	Indicated volume flow rate
MKF	Meter K-factor
f	Pulse frequency

[bbl/hr] [pulses/bbl] [Hz]

For smart flow meters the indicated volume flow rate is obtained directly from the flow meter.

If the flow rate value indicated by the flow meter already includes the correction for meter body expansion, then the 'Meter Body Correction' in the flow computer must be disabled.

Gross volume flow rate

The gross volume flow rate (also called corrected flow rate) is derived from the indicated flow rate (or uncorrected flow rate) as following:

Q_{GV} = Qi * MF * MBF * LCF

Equation 6-20: Gross volume flow rate (volumetric flow meters)

where:

Q _{GV}	Gross volume flow rate	[bbl/hr]
Qi	Indicated volume flow rate	[bbl/hr]
MF	Meter factor	[-]
MBF	Meter body correction factor	[-]
LCF	Viscosity correction factor	[-]

Mass flow rate

 $Q_M = Q_{GV} * \rho * N_{ft3bbl} / 1000$

where:

Equation 6-21: Mass volume flow rate (volumetric flow meters)

where:

Q _M	Mass flow rate	[Klbm/hr]
Q _{GV}	Gross volume flow rate	[bbl/hr]
ρ	Fluid density at the flow meter conditions	[lbm/ft3]
N _{ft3bbl}	Conversion factor cubic foot to barrel	[ft3/bbl]
	1 bbl = 5.61458266 ft3 (configurable)	

Gross standard volume flow rate

 $Q_{GSV} = Q_V * \rho / \rho_{STD}$

Equation 6-22: Gross standard volume flow rate (volumetric flow meters)

where:

Q _{GSV}	Gross standard volume flow rate	[bbl/hr]
Qv	Gross volume flow rate	[bbl/hr]
ρ	Fluid density at the flow meter conditions	[lbm/ft3]
ρ_{STD}	Fluid density at the standard conditions	[lbm/ft3]

Net standard volume flow rate

 $Q_{NSV} = Q_{GSV} * C_{BSW}$

Chapter 6 - Flow computations Flow Rate for Mass Flow Meters

Equation 6-23: Net standard volume flow rate (volumetric flow meters)

where:

Q _{NSV}	Net standard volume flow rate	[bbl/hr]
Q _{GSV}	Gross standard volume flow rate	[bbl/hr]
C _{BSW}	Correction for the percentage of sediment and	[-]
	water content in the fluid.	

Flow Rate for Mass Flow Meters

The following equations apply for any flow meter that provides a mass quantity as a pulse input signal or as a smart signal (communications, HART or analog input). It typically applies for Coriolis flow meters.

In case the flow meter provides a pulse signal, the meter K-factor is applied to obtain the flow rate from the pulse frequency.

Note: Indicated volume flow rate is not calculated for mass flow meters.

Mass volume flow rate

Q_M = f / MKF * 3600 * MF * MBF * LCF / 1000

Equation 6-24: Mass flow rate (mass flow meters with pulse signal)

where:

Q _M	Mass flow rate	[Klbm/hr]
MKF	Meter K-factor	[pulses/lbm]
f	Pulse frequency	[Hz]
MF	Meter factor	[-]
MBF	Meter body correction factor	[-]

 $Q_M = Q_{M,I} * MF * MBF * LCF$

Equation 6-25: Mass flow rate (mass flow meters with smart signal)

where:

Q _{M,I}	Flow rate as indicated by the flow meter	[Klbm/hr]
Q _M	Mass flow rate	[Klbm/hr]
MF	Meter factor	[-]
MBF	Meter body correction factor	[-]

If the flow rate value indicated by the flow meter already includes the correction for meter body expansion, then the 'Meter Body Correction' in the flow computer must be disabled.

Gross volume flow rate

 Q_{GV} = Q_{M} * 1000 / (ρ * N_{ft3bbl})

Equation 6-26: Gross volume flow rate (mass flow meters)

where:

Q _{GV}	Gross volume flow rate	[bbl/hr]
Q _M	Mass flow rate	[Klbm/hr]
ρ	Fluid density at the flow meter conditions	[lbm/ft3]
N _{ft3bbl}	Conversion factor cubic foot to barrel	[ft3/bbl]
	1 bbl = 5.61458266 ft3 (configurable)	

Gross standard volume flow rate

 Q_{GSV} = Q_{M} * 1000 / (ρ_{STD} * N_{ft3bbl})

Equation 6-27: Gross volume flow rate (mass flow meters)

where:

Q _{GSV}	Gross standard volume flow rate	[bbl/hr]
Q _M	Mass flow rate	[Klbm/hr]
ρ_{STD}	Fluid density at the flow meter conditions	[lbm/scf]
N _{ft3bbl}	Conversion factor cubic foot to barrel	[ft3/bbl]
	1 bbl = 5.61458266 ft3 (configurable)	

Net standard volume flow rate

 $Q_{NSV} = Q_{GSV} * C_{BSW}$

Equation 6-28: Net standard volume flow rate (mass flow meters)

where:

Q _{NSV}	Net standard volume flow rate	[bbl/hr]
Q _{GSV}	Gross standard volume flow rate	[bbl/hr]
C_{BSW}		[-]
	water content in the fluid.	

Flow rate for Liquid Orifice Plate Meters

The method uses the equations expressed in AGA Report Number 3, 1992.

Chapter 6 - Flow computations Flow rate for Liquid Orifice Plate Meters

Mass flowrate (AGA-3)

 $q_{M} = N_{1} \times C_{d} \times E_{v} \times Y \times d^{2} \sqrt{\rho \times \Delta P}$

Equation 6-29: AGA-3 mass flow rate

Where

Mass flowrate	lbm/sec
Factor of combined conversion and numerical constants –	-
0.997424	
Coefficient of Discharge	-
Velocity of approach – 1.0 for incompressible fluids	-
Expansion factor – 1.0 for incompressible fluids	-
Orifice diameter at line temperature	in
Flowing density at line conditions	lbm/ft3
Differential pressure	inH2O @ 60F
	Factor of combined conversion and numerical constants – 0.997424 Coefficient of Discharge Velocity of approach – 1.0 for incompressible fluids Expansion factor – 1.0 for incompressible fluids Orifice diameter at line temperature Flowing density at line conditions

Mass flowrate in practical working units [Klbm/hr]

Q_M = q_M * 3600 / 1000

Equation 6-30: Mass flow rate in practical working units (orifice plate)

Gross volume flow rate

 Q_{GV} = Q_{M} * 1000 / (ρ * N_{ft3bbl})

Equation 6-31: Gross volume flow rate (orifice plate)

where:

Q _{GV}	Gross volume flow rate	[bbl/hr]
Q _M	Mass flow rate	[Klbm/hr]
ρ	Fluid density at the flow meter conditions	[lbm/ft3]
N _{ft3bbl}	Conversion factor cubic foot to barrel	[ft3/bbl]
	1 bbl = 5.61458266 ft3 (configurable)	

Gross standard volume flow rate

 Q_{GSV} = Q_{M} * 1000 / (ρ_{STD} * N_{ft3bbl})

Equation 6-32: Gross volume flow rate (orifice plate)

where:

Q _{GSV}	Gross standard volume flow rate	[bbl/hr]
Q _M	Mass flow rate	[Klbm/hr]

ρ_{STD}	Fluid density	/ at the f	low me	ter co	nditi	ons	[lbm/scf]
N _{ft3bbl}	Conversion	factor	cubic	foot	to	barrel	[ft3/bbl]
1 bbl = 5.61458266 ft3 (configurable)							

Net standard volume flow rate

 $Q_{NSV} = Q_{GSV} * C_{BSW}$

Equation 6-33: Net standard volume flow rate (orifice plate)

where:

Q _{NSV}	Net standard volume flow rate	[bbl/hr]
Q _{GSV}	Gross standard volume flow rate	[bbl/hr]
C _{BSW}	Correction for the percentage of sediment and	[-]
	water content in the fluid.	

Orifice Plate and pipe diameter (Corrected) at operating temperature

$$d = d_r \left[1 + \alpha_1 \left(T_L - T_R \right) \right]$$

Equation 6-34: Orifice Diameter correction

$$D = D_r \big[1 + \alpha_1 \big(T_L - T_R \big) \big]$$

Equation 6-35: Pipe Diameter correction

Where:

d	Orifice diameter at operating temperature	°F
d _r	Orifice diameter at reference temperature	°F
D	Pipe diameter at operating temperature	°F
Dr	Pipe diameter at reference temperature	°F
α_1	Coefficient of expansion of orifice and pipe material	in/in/°F
TL	Fluid temperature at operating conditions	°F
T _R	Reference temperature of the Orifice/Pipe.	°F

Diameter (Beta) Ratio

$$\beta = \frac{d}{D}$$

Equation 6-36: Beta ratio calculation

Reynolds Number

Flow -X Liquid USC Application Manual

Chapter 6 - Flow computations

$$R_D = \frac{4 \times q_m}{\pi \times \mu \times D}$$

Equation 6-37: AGA3 Reynolds Number based on Pipe diameter

Where:

R_{D}	Reynolds Number	-
q _m	Mass flowrate	Lbm/sec
Π	3.14159	-
μ	Fluid dynamic viscosity	Lbm/ft-sec
D	Pipe diameter	inches

Velocity of Approach Factor (E_v)

$$E_v = \frac{1}{\sqrt{1 - \beta^4}}$$

Equation 6-38: AGA3 Velocity of Approach calculation

Fluid Expansion Factor Y

The AGA-3 equation for the Fluid Expansion factor only applies for gas. For liquid the Fluid Expansion factor is set to 1 $\,$

AGA-3 defines the following equation for the Fluid Expansion Factor.

$$Y = 1 \quad \left(0.41 + 0.35 \times \beta^4 \right) \times \frac{X_1}{\kappa}$$

Equation 6-39: AGA3 Reynolds Expansion Factor (Gas)

Where:

Y	Expansion Factor
β	Beta ratio
X ₁	Ratio of differential pressure to absolute
	static pressure at the upstream tap
к	Isentropic exponent

When upstream line pressure is measured. Then

$$X_1 = \frac{\Delta P}{N_3 \times P_{f_2}}$$

When downstream line pressure is measured. The

6-120

Chapter 6 - Flow computations Differential pressure cell selection

$$X_1 = \frac{\Delta P}{N_3 \times P_{f_2} + \Delta P}$$

Where:

ΔΡ	Differential Pressure	In,wg	-	
N3	Conversion factor (27.707)	-	-	
P _{f1}	Pressure at the upstream pressing tapping	Psig		
P_{f2}	Pressure at the downstream pressure tapping	Psig	-	

Differential pressure cell selection

When more than 1 differential pressure measurement is applied on a differential pressure flow device, then one of the measurements will be used for the calculation of the mass flow rate. The flow computer provides several different selection methods meter runs using 2 or 3 differential pressure cells.

2 cells, range type = 'Lo Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switch-up percentage of its range and cell B is healthy.
- Select cell B when cell A fails while cell B is healthy

When cell B is currently selected

- Select cell A when cell A value is below or equal to the switch-down percentage of its range and cell A is healthy
- Select cell A when cell B fails and cell A is healthy

2 cells, range type = 'Hi Hi'

When cell A is currently selected

Select cell B when cell A value fails and cell B is healthy

When cell B is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell A when cell B fails and cell A is healthy.

3 cells, range type = 'Lo Mid Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switch-up percentage of its range and cell B is healthy.
- Select cell B when cell A fails while cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

Select cell C when cell B value is above or equal to the switch-up percentage of its range and cell C is healthy

Flow -X Liquid USC Application Manual

Chapter 6 - Flow computations Prover Calculations

- Select cell A when cell A value is below or equal to the switch-down percentage of its range and cell A is healthy
- Select cell A when cell B fails while cell A is healthy
- Select cell C when cell B and cell A fail and cell C is healthy

When cell C is currently selected

- Select cell B when cell B value is below or equal to the switch-down percentage of its range and cell B is healthy
- Select cell B when cell C fails while cell B is healthy
- Select cell A when cell C and cell B fail and cell A is healthy

3 cells, range type = 'Lo Hi Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switch-up percentage of its range and cell B is healthy.
- Select cell C when cell A value is above or equal to the switch-up percentage of its range and cell B fails and cell C is healthy.
- Select cell B when cell A fails while cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell A when cell A value is below or equal to the switch-down percentage of its range and cell A is healthy
- Select cell C when cell B fails while cell C is healthy
- Select cell A when cell B and cell C fail and cell A is healthy

When cell C is currently selected

- Select cell A when cell A value is below or equal to the switch-down percentage of its range and cell A is healthy
- Select cell B when cell B is healthy and 'Auto switchback' is enabled
- Select cell A when cell C and cell B fail and cell A is healthy

3 cells, range type = 'Hi Hi Hi'

When cell A is currently selected

- Select cell B when cell A value fails and cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell A when cell B fails and cell A is healthy
- Select cell C when cell B and A fail and cell C is healthy

When cell C is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell B when cell B is healthy and cell A fails and 'Auto switchback' is enabled

Chapter 6 - Flow computations Prover Calculations

- Select cell A when cell C fails and cell A is healthy
- Select cell B when cell C and A fail and cell B is healthy

Prover Calculations

The proved meter factor is calculated as following:

$$\mathsf{MF}_{\mathsf{P}} = \frac{\mathsf{PV}_{\mathsf{B}} \times \mathsf{C}_{\mathsf{TSP}} \times \mathsf{C}_{\mathsf{PSP}} \times \mathsf{C}_{\mathsf{TLP}} \times \mathsf{C}_{\mathsf{PLP}}}{\frac{\mathsf{P}_{\mathsf{f}}}{\mathsf{MKF}} \times \mathsf{C}_{\mathsf{TLM}} \times \mathsf{C}_{\mathsf{PLM}}}$$

Equation 6-40: Prover Meter Factor.

Where:

MF_{P}	Meter factor calculated from proving	-
PVB	Prover Base Volume at 60 °F and 0 psig	bbl
MKF	Meter K-factor	pulses/bbl
P_{f}	Pulse count (whole pulses or interpolated, depending on whether double chronometry is enabled or not)	pulses
C_{TSP}	Correction factor for the effects of Pressure on the Prover volume ('S' stand for Steel)	-
C_{PSP}	Correction factor for the effects of Pressure on the Prover volume ('S' stands for Steel)	-
C _{TLP}	Correction for the effects of Pressure on the Liquid at the Prover	-
C _{PLP}	Correction for the effects of Pressure on the Liquid at the Prover	-
C _{TLM}	Correction for the effects of Pressure on the Liquid at the Meter	-
C_{PLM}	Correction for the effects of Pressure on the Liquid at the Meter	-

The calculations of C_{TLM} and C_{PLM} is defined in sections 'Volume Correction factor C_{TL}' and 'Volume Correction factor C_{PL}'

The calculation of C_{TLP} and C_{PLP} is similar to that of C_{TLM} and C_{PLM} , except that the average meter pressure and temperature is used instead.

Average prover pressure = (Prover inlet pressure + Prover outlet pressure) / 2

Average prover temperature = (Prover inlet temperature + Prover outlet temperature) / 2

The calculation of $C_{\scriptscriptstyle\mathsf{TSP}}$ is different for pipe provers and compact provers.

$$C_{TSP} = 1 + \left[\left(\overline{T} - \overline{T_b} \right) \times t_{coef} \right]$$

Equation 6-41: C_{TSP} calculation for pipe provers

Where

Т	Average Prover Pressure	°F
Tb	Base Prover temperature	°F
tcoef	Cubical thermal expansion coefficient of the prover steel	in ³ /in ³ /°F

Chapter 6 - Flow computations Prover Calculations

$$C_{TSP} = \left| 1 + \left[\left(\overline{T} - \overline{T_b} \right) \times t_{coef_p} \right] \times \left(1 + \left[\left(\overline{Ti} - \overline{T_b} \right) \times t_{coef_i} \right] \right) \right|$$

Equation 6-42: C_{TSP} calculation for compact provers

Where

TT	Average prover temperature	°F
Ti	Average prover (Invar) switch rod temperature	°F
Tb	Prover base volume temperature	°F
Tcoefp	Square (area) thermal expansion coefficient of expansion of the prover steel	in²/in²/°F
Tcoefi	Linear thermal expansion coefficient of expansion of the switch rod	in/in/°F

The calculation of $C_{\ensuremath{\mathsf{PSP}}}$ is the same for all prover types.

$$C_{PSP} = 1 + \frac{\left(P - P_b\right) \times D}{E \times t}$$

Equation 6-43: C_{PSP} calculation

Where:

Р	Average prover pressure	Psig
Pb	Prover Base Pressure	Psig
D	Prover Internal diameter	Inches
E	Modulus of elasticity of prover	Psi*(in/in)
t	Prover wall thickness	Inches

This page is left blank intentionally.

Chapter 7 - Reports Standard reports

Chapter 7 - Reports

Reports of the Flow-X flow computer are freely configurable. The layout of the standard reports can be modified and other user-defines reports may be added. Refer to manual IIA 'Operation and Configuration', chapter 'Reports' for further explanation.

Standard reports

The Liquid US Customary application provides the following standard reports:

Report name	Report description	
Snapshot	Shows a consistent snapshot of the actual input and calculated values. All values are of the same calculation cycle.	
SN_BiDir	Snap shot report for a bi-directional flow meter	
Meter ticket	The meter ticket that is generated automatically at the end of every batch. Sometimes also called batch report.	
MT_BiDir	Meter ticket for a bi-directional flow meter	
RT_BiDir	This meter ticket that is recalculated when new values have been entered for the standard density / gravity meter factor and/or BS&W.	
Daily	Daily report for the meter run	
DY_BiDir	Daily report for a bi-directional meter run	
CompactProver	Generated automatically at the end of a proving sequence when prover type is set to Calibron, Flow MD or Brooks compact prover.	
PipeProver	Generated automatically at the end of a proving sequence when prover type is set to bi-directional or unidirectional ball prover.	

Table 7: Standard reports

Chapter 7 - Reports Standard reports

(This page is left blank intentionally.)

Chapter 8 - Communication Standard Modbus communication list

Chapter 8 - Communication

Communication with the Flow-X flow computer is freely configurable. Communication lists for Modbus and HART may be modified and added, refer to manual IIA 'Operation and Configuration', chapter 'Communication' for all details.

Standard Modbus communication list

Besides the communication lists used to communicate with flow meters and optional process analyzers, the Liquid US Customary application provides an overall Modbus communication list that contains all commonly used variables and parameters of all the meter runs and the meter station. This communication list can be used for serial and Ethernet communication links.

This overall communication list can be used 'as is', and can also be modified.

The Modbus list requires the 'Flow-Xpress Professional' license for viewing and editing.

(This page is left blank intentionally.)

Chapter 9 - Historical Data Archives Standard Data Archives

Chapter 9 - Historical Data Archives

Historical Data Archives provide a convenient way to store, view and hand-off all relevant historical batch and period data. For Flow-X historical data archives are freely configurable. Existing archives may be modified and new archives may be added.

Standard Data Archives

The application maintains the following historical data archives

- Batch Contains the data of the meter tickets of the last 90 days (configurable)
- Daily Contains the daily metering data of last 90 days (configurable)

9-130

The Flow-X support the Omni Raw Data Archive RDA polling method (Omni archives 701-710).

(This page is left blank intentionally.)