
Technical
Library

As A Service to the
HydroCarbon Measurement

Industry, CRT-SERVICES
Curates this collection of

Digital resources.

www.crt-services.com
www.crtsupply.com

11133 Interstate 45 S Suite O
Conroe, Texas 77302

(713) 242-1190

http://www.crt-services.com
http://www.crt-services.com
http://www.crtsupply.com
http://www.crt-services.com
http://www.crtsupply.com
http://www.crt-services.com

eXLerate 2010

For Microsoft Excel

Advanced Topics Reference

Programming topics,
Wizards, Tools,

Controls,
Alarm Management,

Trending,
Relational Databases,

Client/Server,
Redundancy,

Multiple Languages,
Terminal Services,

Customization & Troubleshooting

0-2
 eXLerate 2010 advanced topics reference

Product eXLerate 2010 advanced topics reference

Reference number 03-0110-2
Revision A.1
Date February 2012

Authors H.A.J. Kok, H.F.J. Rutjes

Disclaimer
Spirit IT has taken care in the preparation of this book, but makes no expressed
or implied warranty of any kind and assumes no responsibility for errors or

omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the issue of the information or programs
contained herein.

Special note
The information contained in this document is the property of Spirit IT B.V., and
may not be reproduced (wholly or in part) used or disclosed without the prior
consent of Spirit IT B.V. and then on condition only that this notice is included in
any reproduction or disclosure. The copyright and the foregoing restriction on

copying, use and disclosure extent to all media in which this information may be

embodied including magnetic storage.

Printed in the Netherlands.

Copyright© 2001-2012 Spirit IT B.V., Eindhoven, the Netherlands. All rights
reserved.

® eXLerate is a registered trademark of Spirit IT B.V.
® Microsoft Windows is a registered trademark of Microsoft Corporation.

® Microsoft Excel is a registered trademark of Microsoft Corporation.

Visit Spirit IT on the Web: http://www.spiritIT.com

http://www.spiritit.com/

eXLerate 2010 advanced topics reference
0-3

Table of contents

Document Control --- 1-11

Revision Coding --- 1-11
Revision History --- 1-12

Revision A.0 -- 1-12
Revision A.1 -- 1-12

Chapter 1 - Programming topics------------------------------------ 1-13

Structuring your applications --- 1-13
Introduction -- 1-13
Worksheet organization --- 1-14

Calculation sheets --- 1-16
Introduction -- 1-16
Calculation sheet layout --- 1-16
Example calculation -- 1-20
Calculation Wizard --- 1-21
Other tips for structured applications ------------------------------- 1-22

Chapter 2 - Summer/winter-time ---------------------------------- 2-25

Introduction --- 2-25
Adjusting time --- 2-25

Chapter 3 - Wizards and Tools -------------------------------------- 3-29

Introduction --- 3-29
Wizards -- 3-33

Tag & Object wizard (Ctrl+W) --------------------------------------- 3-33
Calculation wizard -- 3-38
Color Wizard -- 3-40
Button Wizard -- 3-43
Language Wizard --- 3-45

Tools --- 3-47
Shape Property Tool --- 3-47
Name Definition Tool -- 3-49
Color Palette Tool (Ctrl+L) -- 3-49
Alarm Tree Tool (Ctrl+M) -- 3-51
Generate Report --- 3-52
Generate HTML --- 3-52
Browse OPC Servers --- 3-53
Communications Options -- 3-53
Show Control Center --- 3-53
Unprotected cells marker (Ctrl+U) ---------------------------------- 3-53
Remove External links --- 3-55
Reset Historical values --- 3-55
Recalculate Application (Ctrl+R) ------------------------------------ 3-55
Import Sheets -- 3-56
Advanced Replace -- 3-57

Chapter 4 - Controls --- 4-59

0-4
 eXLerate 2010 advanced topics reference

Introduction --- 4-59
Control Overview --- 4-59
Inserting Controls -- 4-59
Modifying Controls -- 4-60
Control Properties -- 4-61

Backgrounds --- 4-61
Borders & Lines --- 4-65
Margins -- 4-65
Fonts --- 4-66
Formats -- 4-67
Themes -- 4-68
Templates --- 4-69
List Columns --- 4-70

Chapter 5 - Alarm management ------------------------------------ 5-71

Introduction --- 5-71
Alarm page types --- 5-71
Alarm components --- 5-72
Tag database --- 5-73
Alarm Group Table --- 5-73
Alarm Summary Control --- 5-74
Worksheet: Alarm History --- 5-84

Alarm History - Theory of operation (Advanced topic)------------ 5-85
Worksheet: Event History -- 5-87

Event History - Theory of operation (Advanced topic) ------------ 5-88
Event history buttons --- 5-88

VBA and worksheet functions -- 5-90
Alarm dead-band --- 5-91
Other alarm options -- 5-92

Chapter 6 - Trending -- 6-93

Introduction --- 6-93
Enabling Trending -- 6-93
Trending Parameters --- 6-93
Visualizing Trend Data --- 6-94
exTrendChart Control -- 6-95

Chart Area --- 6-95
Plot Area --- 6-95
Navigation --- 6-96
Data Cursor -- 6-98
Time Axes --- 6-99
Value Axes -- 6-100
Pen Defaults -- 6-104
Markers --- 6-104
Limits --- 6-105

exTrendPenSelector Control -- 6-106
Linking to a Chart control -- 6-107
Tags --- 6-107
Pen Sets -- 6-108
Pens --- 6-109

exTrendNavigator Control --- 6-111
Selection Area -- 6-111
Automatic zooming--- 6-113

eXLerate 2010 advanced topics reference
0-5

Accessing trend-data directly --- 6-114
Data storage --- 6-115

Reading Trend Files -- 6-115

Chapter 7 - Relational Databases--------------------------------- 7-117

Introduction --- 7-117
The embedded database -- 7-118

Table layout -- 7-118
Database Identifiers --- 7-119
User definable tables -- 7-119
Driver specific info values --- 7-120
Redundancy & Synchronization ----------------------------------- 7-120
Advanced settings --- 7-121
Corruption & data loss --- 7-122
Troubleshooting -- 7-122

External databases -- 7-123
Configuration --- 7-123
MySQL Database Driver --- 7-123
SQLServer Database Driver --------------------------------------- 7-126

SQL worksheet functions-- 7-128
Introduction -- 7-128
Queries --- 7-128
Views --- 7-129
SQL Table--- 7-130
Scrollable views -- 7-132

SQL VBA functions -- 7-136
The ‘SQLCmd’ object --- 7-136
Executing SQL statements -- 7-136
Reading SQL results --- 7-137
Writing SQL results to worksheets -------------------------------- 7-138
Executing a-synchronous SQL statements ----------------------- 7-139

Chapter 8 - Client & Server -- 8-143

Introduction --- 8-143
Network Configuration Assistant (xNet) --------------------------------- 8-144
Server configuration -- 8-145
Client configuration --- 8-148
Advanced settings --- 8-152
Application development -- 8-153

Names -- 8-153
Network overview -- 8-155
Conditional development -- 8-156
Event logging --- 8-157
Writing to IO devices -- 8-157
Synchronized parameters --- 8-158
Shared values -- 8-158

Chapter 9 - Redundancy --- 9-161

Introduction --- 9-161
Device redundancy -- 9-163

Introduction -- 9-163
Configuration --- 9-164

Device communication channel redundancy ----------------------------- 9-166

0-6
 eXLerate 2010 advanced topics reference

Introduction -- 9-166
Multiple active communication channels -------------------------- 9-166
Single active communication channel ----------------------------- 9-167

Server redundancy -- 9-171
Introduction -- 9-171
Duty selection -- 9-172

Network redundancy -- 9-177
Introduction -- 9-177
Network considerations -- 9-178

Chapter 10 - Multiple languages --------------------------------- 10-179

Introduction --- 10-179
Setup Microsoft Windows to use multiple languages ------------------- 10-180
Application support --- 10-184

Adding multi-lingual support ------------------------------------- 10-184
Language worksheet layout -------------------------------------- 10-185
Adding languages --- 10-186
Adding user defined texts -- 10-189
Multi-lingual Tag Database --------------------------------------- 10-190
Multi-lingual Buttons -- 10-191
Multi-lingual worksheets -- 10-192
Multi lingual VBA code and forms -------------------------------- 10-193
Language selection -- 10-193

Chapter 11 - Terminal Services ----------------------------------- 11-195

Introduction --- 11-195
Requirements --- 11-195

Operating System --- 11-195
Microsoft Office -- 11-196
eXLerate License -- 11-196

Configuration --- 11-196
Operating System --- 11-196
eXLerate --- 11-197

Using Terminal Services -- 11-197

Chapter 12 - Trouble shooting ------------------------------------ 12-199

Introduction --- 12-199
Real-time data communications problems ------------------------------ 12-200
Worksheet functions are excessively called ----------------------------- 12-201
The application does not start up properly ------------------------------ 12-202

Chapter 13 - User notes --- 13-209

List of figures and tables

Figure 1-1: Worksheet naming convention--- 1-15
Figure 1-2: Calculation worksheet layout -- 1-17
Figure 1-3: Sub-groups in a calculation sheet --------------------------------------- 1-19
Figure 1-4: Using calculation tags in a worksheet ----------------------------------- 1-20
Figure 1-5: Example calculation -- 1-20

eXLerate 2010 advanced topics reference
0-7

Figure 1-6: Calculation Wizard -- 1-22
Figure 2-1: Time Table -- 2-26
Figure 2-2: Disabled adjustment for daylight saving in Windows ------------------ 2-27
Figure 3-1: Available Wizards in eXLerate --- 3-29
Figure 3-2: Available Tools in eXLerate -- 3-30
Figure 3-3: Invocation of the Tag & Object Wizard ---------------------------------- 3-34
Figure 3-4: Step 1/4 of the Tag & Object wizard ------------------------------------ 3-34
Figure 3-5: Step 2/4 of the Tag & Object wizard ------------------------------------ 3-35
Figure 3-6: Step 3/4 of the Tag & Object wizard ------------------------------------ 3-36
Figure 3-7: Step 4/4 of the Tag & Object wizard ------------------------------------ 3-37
Figure 3-8: Tag & Object wizard progress --- 3-38
Figure 3-9: Invocation of the Calculation Wizard ------------------------------------ 3-38
Figure 3-10: Step 1/1 of the Calculation Wizard ------------------------------------ 3-39
Figure 3-11: Color Table layout --- 3-40
Figure 3-12: Invocation of the Color Wizard --- 3-41
Figure 3-13: Step 1/1 of the Color Wizard --- 3-42
Figure 3-14: Invokation ofthe Button Wizard -- 3-43
Figure 3-15: Step 1/1 of the Button Wizard --- 3-43
Figure 3-16: Button Wizard completed --- 3-44
Figure 3-17: Invokation of the Language Wizard ------------------------------------ 3-45
Figure 3-18: Step 1/1 of the Language Wizard -------------------------------------- 3-45
Figure 3-19: Language Wizard completed --- 3-46
Figure 3-20: Selection of the Shape Tool -- 3-47
Figure 3-21: Shape properties Tool -- 3-48
Figure 3-22: Names Tool -- 3-49
Figure 3-23: Names Tool with opened name list-box ------------------------------- 3-49
Figure 3-24: Selection of the Color Palette Tool ------------------------------------- 3-50
Figure 3-25: Color Palette Tool --- 3-50
Figure 3-26: Starting the Alarm directory tree tool --------------------------------- 3-51
Figure 3-27: Alarm Directory Tool -- 3-52
Figure 3-28: Generate Report -- 3-52
Figure 3-29: Cell formatting dialog showing the protection status ----------------- 3-54
Figure 3-30: Marked unprotected cells --- 3-54
Figure 3-31: Removing external links -- 3-55
Figure 3-28: Import Sheets --- 3-56
Figure 3-28: Advanced Replace --- 3-57
Figure 4-1: Inserting Controls on Worksheets --------------------------------------- 4-59
Figure 4-2: Design mode -- 4-60
Figure 4-3: Inserting on VBA forms -- 4-60
Figure 4-4: Properties button --- 4-60
Figure 4-5: Background types -- 4-61
Figure 4-6: Solid background color --- 4-61
Figure 4-7: Gradient background colors-- 4-62
Figure 4-8: Background pattern -- 4-63
Figure 4-9: Background picture --- 4-64
Figure 4-10: Borders & Lines --- 4-65
Figure 4-11: Margins -- 4-65
Figure 4-12: Fonts --- 4-66
Figure 4-13: Formats -- 4-67
Figure 4-14: Themes -- 4-68
Figure 4-15: Templates --- 4-69
Figure 4-16: List Columns --- 4-70
Figure 5-1: Alarm Group Table --- 5-73
Figure 5-2: Alarm Summary Control --- 5-74

0-8
 eXLerate 2010 advanced topics reference

Figure 5-3: Alarm Groups Tree --- 5-75
Figure 5-4: Alarm Groups Properties --- 5-75
Figure 5-5: Alarm Group State Properties -- 5-75
Figure 5-6: Alarm Summary List -- 5-76
Figure 5-7: Alarm List Colors --- 5-77
Figure 5-8: Alarm List Font-- 5-77
Figure 5-9: Using Alarm Filters --- 5-78
Figure 5-10: Configuring Alarm Filters --- 5-79
Figure 5-11: Alarm Filter Properties -- 5-79
Figure 5-12: Real-time Mode Properties-- 5-80
Figure 5-13: Alarm Acknowledgement Buttons -------------------------------------- 5-80
Figure 5-14: Alarm Suppression Buttons --- 5-81
Figure 5-15: Editing one or more Alarms -- 5-81
Figure 5-16: Edit Alarms Dialog -- 5-82
Figure 5-17: Alarm Summary Security Settings ------------------------------------- 5-83
Figure 5-18: Alarm history worksheet -- 5-84
Figure 5-19: An alarm history window with the 4 last alarm messages ------------ 5-85
Figure 5-20: Event history worksheet -- 5-87
Figure 5-21: Trending related VBA code --- 5-89
Figure 5-22: Alarm dead-band example used for a high limit alarm --------------- 5-91
Figure 6-1: Insert Trend Controls --- 6-94
Figure 6-2: exTrendChart Control -- 6-95
Figure 6-3: Plot Area properties -- 6-95
Figure 6-4: Plot area margins --- 6-96
Figure 6-5: Navigation properties -- 6-97
Figure 6-6: Data Cursor --- 6-98
Figure 6-7: Data Cursor Properties --- 6-98
Figure 6-8: Data Cursor Date/Time --- 6-98
Figure 6-9: Pen Label Properties -- 6-99
Figure 6-10: Pen Label Color -- 6-99
Figure 6-11: Time Axes properties -- 6-100
Figure 6-12: Value Axes properties -- 6-100
Figure 6-13: Scaling properties -- 6-101
Figure 6-14: Value Axis Styles --- 6-102
Figure 6-15: Percentage Axis -- 6-102
Figure 6-16: Engineering Units Axis --- 6-103
Figure 6-17: Using both Percentage and Engineering Units Axis ------------------ 6-103
Figure 6-18: Showing Engineering Units Axis for specific pen --------------------- 6-103
Figure 6-19: Default Pen Style --- 6-104
Figure 6-20: Markers on the Chart -- 6-104
Figure 6-21: Selecting Markers using the PenSelector ----------------------------- 6-104
Figure 6-22: Alarm Limits on Chart -- 6-105
Figure 6-23: Limits option in PenSelector --- 6-105
Figure 6-24: Add Limits Column to PenSelector ------------------------------------ 6-105
Figure 6-25: exTrendPenSelector Control --- 6-106
Figure 6-26: PenSelector individual panes -- 6-106
Figure 6-27: Selecting a Target Chart --- 6-107
Figure 6-28: Editing names -- 6-107
Figure 6-29: Tag selection --- 6-107
Figure 6-30: Tags Properties --- 6-108
Figure 6-31: Pen sets --- 6-108
Figure 6-32: Pen Sets Properties -- 6-108
Figure 6-33: Pen-set files -- 6-109
Figure 6-34: Pens Toolbar and List -- 6-109

eXLerate 2010 advanced topics reference
0-9

Figure 6-35: Pens Properties --- 6-109
Figure 6-36: exTrendNavigator Control --- 6-111
Figure 6-37: Selection Area Properties -- 6-112
Figure 6-38: Selection Area -- 6-112
Figure 6-39: Auto Zoom Properties -- 6-113
Figure 6-40: Moving the left- and right edges -------------------------------------- 6-113
Figure 7-1: Embedded Database Path --- 7-118
Figure 7-2: External Database Table -- 7-123
Figure 7-3: SQL query & view relation -- 7-129
Figure 7-4: SQL Table -- 7-130
Figure 7-5: Example exSQLViewQuery(..) worksheet function -------------------- 7-131
Figure 7-6: Creating worksheet variables for scrollable view ---------------------- 7-132
Figure 7-7: Select scrollable range -- 7-133
Figure 7-8: Scrollable range formula -- 7-133
Figure 7-9: Creating a scrollbar --- 7-133
Figure 7-10: Formatting the scrollbar --- 7-134
Figure 7-11: Attach scrollbar to variable -- 7-134
Figure 7-12: Update scrollbar maximum value ------------------------------------- 7-135
Figure 7-13: Synchronously executed SQL statements ---------------------------- 7-139
Figure 7-14: A-synchronously executed SQL statements -------------------------- 7-139
Figure 8-1: xNet license detection --- 8-144
Figure 8-2: Server configuration--- 8-145
Figure 8-3: Share Report folder on server -- 8-146
Figure 8-4: Server communication statuses -- 8-146
Figure 8-5: Client configuration-- 8-148
Figure 8-6: Client network drive mapping -- 8-150
Figure 8-7: Client shortcut configuration -- 8-151
Figure 8-8: Client communication statuses --- 8-151
Figure 8-9: Advanced settings --- 8-152
Figure 8-10: Network overview example -- 8-155
Figure 8-11: Network adaptor animation --- 8-155
Figure 8-12: Conditional worksheet function --------------------------------------- 8-156
Figure 8-13: Synchronized parameters --- 8-158
Figure 8-14: Shared value worksheet function ------------------------------------- 8-159
Figure 8-15: Shared value on multiple computers --------------------------------- 8-159
Figure 9-1: Tag Database with redundant IO --------------------------------------- 9-164
Figure 9-2: Query Tables write to multiple columns in Tag DB -------------------- 9-164
Figure 9-3: Primary and secondary protocols --------------------------------------- 9-167
Figure 9-4: Primary and secondary protocol queryes ------------------------------ 9-167
Figure 9-5: Primary protocol device failure --- 9-168
Figure 9-6: Swapping protocol devices -- 9-168
Figure 9-7: Alternate protocol device --- 9-168
Figure 9-8: Protocol device selection -- 9-168
Figure 9-9: Protocol table with device selection ------------------------------------ 9-169
Figure 9-10: Device selection columns -- 9-169
Figure 9-11: Protocol device selection periodic handler ---------------------------- 9-169
Figure 9-12: Protocol device selection code -- 9-170
Figure 9-13: Duty selection -- 9-172
Figure 9-14: Local Duty status--- 9-172
Figure 9-15: IO Routing -- 9-174
Figure 9-16: Query Table with routing support ------------------------------------- 9-175
Figure 9-17: Query Table routing columns -- 9-175
Figure 9-18: Query Table routing formula -- 9-176
Figure 9-19: Query Table routing formula pseudo code---------------------------- 9-176

0-10
 eXLerate 2010 advanced topics reference

Document Control

Figure 9-20: Network redundancy --- 9-177
Figure 9-21: Redundant network cards on a single network ----------------------- 9-178
Figure 9-22: Redundant network cards on separate networks --------------------- 9-178
Figure 10-1: Regional and language options -------------------------------------- 10-180
Figure 10-2: Supplemental language support------------------------------------- 10-181
Figure 10-3: Installing language packs -- 10-182
Figure 10-4: Skip file copying during language pack install ---------------------- 10-183
Figure 10-5: Restart computer after installing language pack ------------------- 10-183
Figure 10-6: Multi -ingual worksheet ‘xLanguage’ -------------------------------- 10-184
Figure 10-7: Creating a new language -- 10-184
Figure 10-8: Language Wizard ourput --- 10-185
Figure 10-9: Language worksheet without formatting --------------------------- 10-185
Figure 10-10: Language worksheet layout -- 10-185
Figure 10-11: Adding languages --- 10-186
Figure 10-12: Opening the ‘Language.xls’ file ------------------------------------ 10-187
Figure 10-13: Select desired language -- 10-187
Figure 10-14: Select language column -- 10-187
Figure 10-15: Select ‘xLanguage’ worksheet ------------------------------------- 10-188
Figure 10-16: Locate first empty column in language worksheet ---------------- 10-188
Figure 10-17: Succesfully added language -- 10-188
Figure 10-18: Use ‘Apply Worksheet Changes’ after adding a language -------- 10-188
Figure 10-19: User defined texts in Language worksheet ------------------------ 10-189
Figure 10-20: User defined texts are terminated by two or more empty rows - 10-189
Figure 10-21: Sorting user defined texts -- 10-189
Figure 10-22: Insert column into the Tag Database ------------------------------ 10-190
Figure 10-23: Rename column to proper language ------------------------------- 10-190
Figure 10-24: Multi-lingual Button Table -- 10-191
Figure 10-25: Choosing a multi-lingual button text ------------------------------ 10-191
Figure 10-26: Selecting a new language -- 10-191
Figure 10-27: ‘exLanguageText’ worksheet function ----------------------------- 10-192
Figure 10-28: Linking a control to a cell or name -------------------------------- 10-192
Figure 10-29: Language text referenced by a control ---------------------------- 10-192
Figure 10-30: Multi-lingual VBA code -- 10-193
Figure 10-31: Multi-lingual user form --- 10-193
Figure 10-32: Obtain currently selected language -------------------------------- 10-194
Figure 10-33: Selecting a new language -- 10-194
Figure 10-34: Language selection buttons/pictures ------------------------------ 10-194
Figure 10-35: Assing language selection macro to picture ----------------------- 10-194
Figure 11-1: Terminal Services Setup --- 11-195
Figure 11-2: Locating the Remote Desktop Client -------------------------------- 11-198
Figure 11-3: Remote Desktop Connection Window ------------------------------- 11-198
Figure 12-1: Example of a VB function causing excessive calling --------------- 12-201
Figure 12-2: Example of a correct VB function avoiding excessive calling ------ 12-201

eXLerate 2010 advanced topics reference
0-11

Document Control

Document Control

Revision Coding

All documents are supplied with a revision code. This code has the following
format:

<major revision letter>.<minor revision number>. Initially, the document has
revision code A.0. When in the next release of the document minor changes
were implemented, the minor revision number increases. When major changes
have been implemented, the major revision number increments.

Example document:

A.0 First revision

A.1 Second revision with minor changes implemented
A.2 Third revision, with other minor changes
B.0 Fourth revision, with (a) major change(s).

The revision coding will be modified for each new release of a document.

All software packages and software modules or components will be provided
with a version number. This number consists of three parts: A release number, a
major revision number and a minor revision number separated by decimal
points. A release number identifies the generation number of the software, the
major number refers to the main functionality of the program, seen from the
user's point of view, while the minor revision number identify a new software

version.

Example program:

1.01.001 Initial release

1.01.002 Minor change

1.02.001 Major change
2.01.001 Family change

0-12
 eXLerate 2010 advanced topics reference

Document Control

Revision History

Revision A.0

Author : H.A.J. Kok, H.F.J. Rutjes
Date : May 2002 - November 2011

Initial release of the eXLerate 2010 Reference Manual Volume II.

Revision A.1

Author : H.F.J. Rutjes
Date : February 2012

Added ‘Import Sheets’ and ‘Advanced Find & Replace’ documentation.

eXLerate 2010 advanced topics reference
1-13

Chapter 1 - Programming topics - Structuring your applications

Chapter 1 - Programming topics

Structuring your applications

Introduction

User-defined calculations in eXLerate may be placed everywhere: on potentially
each worksheet cell, an expression containing worksheet functions may be

entered. In various worksheets, for example in the tag database, next to the last
database columns, such calculations may be entered. On operator display
worksheets, user-defined expressions may be entered, for example to calculate
the engineering units of a process parameter.

In itself it is acceptable to use this approach, and technically correct. However,

there are a number of drawbacks to this ‘at-random’ approach:

 It is difficult to obtain an overview of a complicated calculation, because
functionality is scattered over various worksheets.

 It is difficult to do maintenance on an application, because each
application is specifically built in a unique way. “Where did I put the

equation for unit conversions again?”

 Redundancy in application engineering is hard to avoid, because on
various sheets, the same result is required. This result is likely to be re-
implemented each time it is needed.

 Unstructured applications are likely to be created when calculations are
scattered over the workbook. The drawbacks of creating and maintaining
unstructured programs are too many to discuss in this context.

It is clear from the above that a structured application has many advantages:

 It is easy to obtain an overview of a complicated calculation, because
functionality is grouped together over well-defined worksheets.

 Maintenance on an application can be done by various programmers, since
all applications are similarly built according to the same principle.

 Redundancy will be avoided: each calculation is present only once, on a
dedicated worksheet area.

 Structured applications are the result, improving both the software quality
and project duration. The predictability of application engineering
improves.

In this section, you’ll learn how to setup your application in a structured way.
Especially a calculation worksheet will be introduced, and its conventions and
usage.

1-14
 eXLerate 2010 advanced topics reference

Chapter 1 - Programming topics - Structuring your applications

This reference manual however is not a learning book on structured
programming. If you feel uncomfortable with structured programming, please
check your bookstore for one of the many titles available on this area.

If your application doesn’t require any user-defined calculations, you might want
to continue to a next chapter, although it would be interesting to take a look at
how to setup a structured application.

Worksheet organization

There seem to be a lot of worksheets in the ‘MyTemplate’ sample project at first
sight. There are many display and report sheets and a number of additional

configuration worksheets containing various tables. In eXLerate, the following
naming convention is used for worksheets:

 Display sheets are worksheets, which are used as operator displays. These
worksheets may have any sheet name; internally these sheets have an
object name starting with ‘dsp’.

 Report sheets are worksheets, which are used as internal report pages.
The names of these worksheets start with a lowercase ‘r’; internally report
sheets have an object name starting with ‘rep’.

 Configuration sheets are all other worksheets used by eXLerate for its
real-time HMI functionality. The name of such a worksheet starts with a

lowercase ‘x’; internally a configuration sheet has an object name starting
with ‘wks’. This is a convention used by eXLerate, and users are expected
to comply with this convention.

eXLerate 2010 advanced topics reference
1-15

Chapter 1 - Programming topics - Structuring your applications

Figure 1-1: Worksheet naming convention

1-16
 eXLerate 2010 advanced topics reference

Chapter 1 - Programming topics - Calculation sheets

Calculation sheets

Introduction

A calculation sheet is a worksheet containing logically grouped worksheet
calculations, which are internally used by the application. The name of a

calculation worksheet starts with a lowercase ‘x’, because it is neither a display
nor report sheet. In the ‘MyProject’ sample, worksheet ‘xCalc_1’ is such a
calculation sheet.

In a calculation worksheet, calculation results are orderly grouped. In addition,
special support from eXLerate is available.

Calculation sheet layout

Many HMI software packages are built using predefined objects, where a user is
able to create one or more instances of an object. For example, a motor

operated valve can be implemented using a generic ‘valve’ object. When the
user needs six valves in an application, the valve object is copied six times, and
the object properties are defined per valve instance.

In Excel/eXLerate, such complete objects do not literally exist as such, although
practical implementation is almost identical to the valve example above.

In a spreadsheet, a calculation result can be obtained using various rows for the
calculation. For example, a motor operated valve is controlled via nine
parameters, which are grouped together on nine consecutive rows in our
spreadsheet.

Such a calculation result over multiple rows may be functionally thought of as an
‘object’. Rather actually than creating multiple objects, the calculations are

copied over multiple columns to create multiple instances of the ‘object’.

Calculations for multiple valves may be defined in multiple columns, where each
column represents a single valve ‘object’ instance.

The calculation worksheet is set up to support such multiple sections.

eXLerate 2010 advanced topics reference
1-17

Chapter 1 - Programming topics - Calculation sheets

The ‘xCalc_1’ calculation sheet looks as follows:

Figure 1-2: Calculation worksheet layout

The worksheet contains a title line, a header line with various columns, and

vertically grouped sections. A group may be optionally divided in subgroups.

The Title line is used to identify the calculation worksheet in the application for
the application developer. In the ‘MyProject’ sample project, it contains a major,
and a minor version number.

In the figure above, all groups are at outer group-level
‘1’, except group ‘Valves’, which is opened. ‘Valves’
contains a sub-group: ‘Run valves’, and various
calculations. The worksheet functions/constants/values
under the ‘_1A’ column are colored blue and green.

The following columns are defined in the header line at row #3:

 Group
This column contains the logical group name, under which the calculations
are identified, such as ‘Global settings’, ‘Valves’, and ‘Transmitters’. The
group names are used to row-wise group the items using the ‘Data’,
‘Group’ command from the Excel menu bar. When rows are grouped
together, small ‘+’, ‘-’, ‘1’ and ‘2’ buttons appear in Excel, with which

groups may be opened and closed. To close all groups, click on the ‘1’
button to activate the 1st group level. To open all groups to the 2nd level,
click on the ‘2’ button.

 CalcTag

The name of the ‘calculation tag’ is defined at this column. A calculation
tag is a tag that may be referred to in the application, including reports.
eXLerate creates various name objects for this calculation tag.

Title line
Header line

Grouped sections

Opened subgroup

1-18
 eXLerate 2010 advanced topics reference

Chapter 1 - Programming topics - Calculation sheets

For example, when the name: ‘Calc.MyName’ is entered, eXLerate
generates a name: ‘Calc.MyName’ at the ‘_Value’ column*. More names
may be created, depending on more columns starting with an underscore
character** (‘_’).

In the example above, because the section ‘_1A’ is defined at calculation
tag ’Calc.ValveIndex1’, the name: ‘Calc.ValveIndex1_1A’ is created. Using
this method, consistent object names are created for multiple sections,
where each additional section has an associated additional column, such

as ‘_2’, ‘_3’etc.

A calculation tag name should always start with ‘Calc.’ as a convention. If
this field is left empty, no name is created.

 Description

This optional field contains the user-defined description of the calculation
at the ‘_Value’ or ‘_{number}’ tag.

 Type

This optional field contains the user-defined type of the calculation tag, for
example: CONST, SET, CALC, or TAG, for respectively a constant number,
a value set by a VBA-procedure, a calculation, or a value from the tag
database.

 _Value
At this column, the Calculation Wizard creates the calculation name as
defined under CalcTag, for calculation tags without additional sections.

 Store

At this column, the storage worksheet function exStorageID (…) for

the ‘_Value’ column may be entered. Storage worksheet functions may be
used to create retentive constants in a calculation worksheet. Retentive
constants are automatically stored on disk, and loaded back from disk at

system startup.

 _{number}
Additional columns containing a section identification, for example ‘_1’, or
‘_1A’ may be added to the row. An additional section should start with an
underscore (‘_’).

Color-coding
It is strongly recommended to use distinct colors for various items, in order to
be able to distinguish the source of an item on a calculation sheet.

* A field should be non-empty to create a name in a calculation sheet
** Such additional fields may be used for additional sections, such as a machine number or
metering line

eXLerate 2010 advanced topics reference
1-19

Chapter 1 - Programming topics - Calculation sheets

In the ‘MyTemplate’ project, the following color-coding is used:

Description Shortcut Type Color

Constants CONST Constants Black

Value set in Program code or worksheet SET VBA/Edit Orange

Value calculated in sheet formula CALC Formulae Blue

Input from tag database TAG Tag base Green

To be implemented, not completed yet ??? Error/To Do Red

Table 1-1: Color-coding in a calculation sheet

Using color-coding, best results are obtained to obtain a quick insight in the

application.

The color-coding table above is available in the sample project as the first
group: ‘Colors and naming conventions’. It may be opened/closed at any time
during application development using the ‘+’ and ‘-‘ group-buttons at the left
hand side of the page.

Using sub-groups
A sub-group is a member of a certain group. For example, in the group: ‘Global
Settings’, a sub-group is defined: ‘Version Control’, as in the figure below:

Figure 1-3: Sub-groups in a calculation sheet

The sub-group has a title under the Description field of a group, and a grey bar
across all columns which are included in the calculations for that sub-group. In
the example above, the revision of the application is maintained with two
constants.

The sub-group has two CalcTags defined: ‘Calc.Revision.Hi’, and
‘Calc.Revision.Lo’, which are two constants stored in the cell. Since these two
constants are not required to be actually retentive, but are changing only when
an application engineer modifies the application itself, it are two constants
rather than two retentive values, hence the Store columns of the two calculation
tags are left empty.

In another worksheet, or in VBA, these constants may be referred to with their

logical ‘object’ names ‘Calc.Revision.Hi’, and ‘Calc.Revision.Lo’ rather than the
direct cell-references, as in the title bar of this calculation worksheet:

1-20
 eXLerate 2010 advanced topics reference

Chapter 1 - Programming topics - Calculation sheets

Figure 1-4: Using calculation tags in a worksheet

Although looking somewhat complex for a simple item like a version number, its
value is better to understand when the application contains hundreds or maybe
even thousands of calculations and constants.

Example calculation

In the example calculation below, there will be an index calculated from three
digital inputs from two identical motor-operated valves, each on a different

production line. The three digital inputs for each valve are obtained from the tag
database.

In the group: ‘Valves’, a sub-group is defined: ‘Run-valves’; in the sample
application it is the only sub-group. For each valve, there are three inputs from
the tag database: a digital input which becomes ’1’ when the valve is closed, a
digital input which becomes ‘1’ when the valve is opened, and a digital input
which becomes ‘1’ when an error occurred at the valve’s remote control unit.

A calculation should be done to convert valve positions to an index. The index is

used for animation of a valve symbol in the application: when the valve is open,
it should be colored green etc., according to the table below:

Description Status Value Color

Valve is opened OPEN 1 Green

Valve is closed CLOSE 2 Red

Value is traveling TRAVELLING 3 Yellow

Valve has an illegal status ILLEGAL 4 Violet

The example calculation is shown below:

Figure 1-5: Example calculation

eXLerate 2010 advanced topics reference
1-21

Chapter 1 - Programming topics - Calculation sheets

The three digital inputs from the tag database are colored green, as per color
convention.

The calculation is done using the VB

function GetValveIndex(…), which is

also included in the sample project.

This function converts the three inputs
to an index, ranging from 1..4 for

CLOSE, OPEN, TRAVEL or ERROR
status of the valve.

Note the ‘+0’ addition to the function arguments. All VB functions should be
called from a worksheet using the ‘+0’ convention for each argument. The
reason why is explained in Chapter 10, ‘Worksheet functions are excessively

called ’on page 12-201, and has to do with internal recalculation issues of Excel.

There is only one name created for this section: ‘_1A’, which is
‘Calc.ValveIndex1_1A’. Multiple valves for other sections are simply created by
copying this column to another column ‘_2A’. There are no names created for
the individual valve bits, because no name appears for these tags in the CalcTag
column.

It may be clear that searching for valve status values in the application is easily
found: in the calculation sheet, at section ‘Valves’. The values may be checked
and tested right here in the worksheet, and avoids unexpected application
behavior.

Calculation Wizard

Calculation names in a calculation worksheet are created using the appropriate
Wizard from the eXLerate ribbon:

The following wizard dialog appears when ‘Calculation Wizard’ option is
activated:

1-22
 eXLerate 2010 advanced topics reference

Chapter 1 - Programming topics - Calculation sheets

Figure 1-6: Calculation Wizard

There are basically two choices: All calculation names may be removed, without
generation of new ‘Calc.’ object names, or alternatively, new object names are
generated.

Press <Enter> to activate the default ‘Run’ button, after which the specified
calculation object names are generated.

Verify with a closed Calculation Wizard that the required object names are
properly generated.

Other tips for structured applications

Introduction
Although calculation worksheets alone are not the only ingredient in creating
structured applications, many real-world, professional, high-demanding
applications have shown that setting up all your calculations in a project using
some sort of calculation worksheet is a good approach for project development.

Color-coding
Color-coding of the calculation worksheets is another great idea to keep track of
the origin of the data, so you are able to understand more quickly how an
application is structured.

eXLerate 2010 advanced topics reference
1-23

Chapter 1 - Programming topics - Calculation sheets

Transparency
A well-designed application should be both transparent to an application

engineer, who is responsible of creating a technical correct application, as well
as to an application tester who is responsible of verifying that an application
indeed behaves as defined in the project specification or functional design
specification.

Project transparency can be full explored by using the strength of a spreadsheet
for calculation purposes.

Most ingredients, such as the configuration tables of eXLerate, are designed for
transparency and efficient programming: each configuration table can be
configured, verified, and carefully tested, both in ‘real-world’ Runtime mode, or
in Verify mode, where expressions and calculations can still be monitored,
verified and even modified with data-communications actually running.

Simulation & Testing
Data communications can be simulated to verify all calculations in an
application. Step by step, all of the entries in all tables can be verified. When all

configuration tables have been thoroughly tested, the application is well tested;
it’s as simple as that.

For data-communications, a data-scope/debugger is available to check all
incoming and outgoing messages.

The configuration of an application can be easily documented as well, simply by

printing most or all of the worksheets.

Application development
Functionality still missing in an application, or even in eXLerate may be added
by a user or application developer. For example, you are able to create your own
tools and wizards using VB(A).

All of these ingredients should be more than adequate to create correct,
powerful and yet simple applications that are easily tested and maintained
afterwards.

And best of all, you are using your most popular spreadsheet program to
achieve all this!

In the following chapter, you will be introduced to how Visual Basic for
Application is integrated in eXLerate, and how to use VBA in your real-time HMI

application.

1-24
 eXLerate 2010 advanced topics reference

Chapter 1 - Programming topics - Calculation sheets

This page is intentionally left blank.

eXLerate 2010 advanced topics reference
2-25

Chapter 2 - Summer/winter-time - Introduction

Chapter 2 - Summer/winter-time

Introduction

eXLerate is able to automatically detect a summer- and winter- changeover.

More than that, eXLerate is able to automatically update externally connected
devices, and change these devices from summertime to wintertime or vice
versa.

Adjusting time

To avoid fiscal integrity problems for many devices with respect to these
changeovers, eXLerate adjusts the time in two half hour steps, avoiding full hour

changes, and thus invalidating hourly based counters.

This segmented changeover method is a generally accepted method for systems
requiring summer- and wintertime changeovers, including fiscal metering

applications for custody transfer purposes.

Changes to summertime and wintertime are automatically catered for by the

internal ‘Latch(…)’ worksheet functions, as follows:

 Summer- to Wintertime changeover
When the time changes from summer- to wintertime, officially, the clock
is set backwards for one hour, e.g. at 03:00 at night, the time is adjusted
to 02:00. In eXLerate, summertime to wintertime changeovers take place
in two steps:

o At 02:45, the time is adjusted to 02:15, causing a half hour correction

o Again, at 02:45 the time is adjusted to 02:15, causing the second half
hour correction.

o After this sequence, latches of 02:00 – 03:00 contain ‘double’ hours,
since the corresponding hourly interval event took two hours. This is a
de-facto standard behavior in time-switching industrial systems, including
custody transfer metering systems.

 Winter- to summertime changeover
When the time officially changes from wintertime to summertime, the
clock is advanced for one hour, e.g. at 02:00 at night at the designated

date, the time is advanced for an hour to 03:00. In eXLerate, this
changeover takes place in the following steps:

o At 02:15, the clock is advanced to 02:45, causing a correction of half an
hour. At 03:00, a normal hourly transition takes place. The latched data
of 02:00- 03:00 contain only for a half hour of data.

2-26
 eXLerate 2010 advanced topics reference

Chapter 2 - Summer/winter-time - Adjusting time

o At 03:15, the clock is advanced again, to 03:45, causing the second
correction to take place. At 04:00, a normal hourly transition takes place,
again with a half hour of latched data.

o The net result of advancing the clock a full hour is that the fiscal reports
contain two reporting hours each containing a half hour of data. Also this
behavior is generally accepted by the industry.

The dates for summer- and winter time changeovers may be defined in the
application, in the Time Table, and has a layout as follows:

Figure 2-1: Time Table

The layout is a typical configuration table containing the table name
(‘rTimeTable’), and columns headers containing the month, day and hour of the
moment at which summertime becomes active (the switch-over point), and the
month, day, and hour at which the wintertime becomes active.

eXLerate 2010 advanced topics reference
2-27

Chapter 2 - Summer/winter-time - Adjusting time

When changeovers are enabled, the built-in Windows changeovers must be
disabled, as follows:

Figure 2-2: Disabled adjustment for daylight saving in Windows

To fully implement date/time synchronization with external devices, the
following aspects would be needed to cater for as well:

 To effectively enable summer- and winter changeovers, you must call the

‘exEnableSummerWinter()’ method of the ‘Comms’ object in VBA once.

These settings are stored in the registry and are permanent hereafter.

 To enable time updates to external devices, use must implement an
update to the device using the tag database, in which the current time
and date should be sent to the device. Sometimes, this is done via regular
write registers; in other cases a dedicated number must be written to the
device. You could utilize the calculation worksheet for this purpose if a

dedicated format is required.

2-28
 eXLerate 2010 advanced topics reference

Chapter 2 - Summer/winter-time - Adjusting time

 You could consider implementing a dedicated write-query for this purpose,
so the time/date update is sent to the device independently from other
write commands to the device.

 You could create a separate routine in VBA, which updates all connected
devices simultaneously by triggering the appropriate time registers of

these devices, for example using the ‘exUpdateForce(…)’ method of the

‘Comms’ object.

When summer- and winter changeovers are effectively enabled, a message is
sent to the event logger:

‘SummerTime is set for dd/mm/yyyy hh:15:00; WinterTime is set for
dd/mm/yyyy hh:45:00. Currently in xxxxxTime’.

eXLerate 2010 advanced topics reference
3-29

Chapter 3 - Wizards and Tools - Introduction

Chapter 3 - Wizards and Tools
In the previous chapters, you have already been introduced to most of the
available Wizards and Tools of eXLerate.

A Wizard in this context is a development assistant that generates parts of an
application for you, while a Tool is a smaller utility to help you with certain

aspects of an application.

For example, the Color Wizard is called a wizard, because it is able to
create/generate a complete color palette table for you, while the Color Palette
Tool simply shows to you the relation between an index number and its actual
color.

Both utilities have in common that both types help you with application
development.

Under the Tools menu in eXLerate finally, a number of additional miscellaneous
functions have been placed that help you in application development.

In this chapter, all available wizards, tools and additional miscellaneous
functions are discussed. It may therefore be viewed as the reference chapter for
development utilities.

Introduction

Because of the fact that eXLerate is worksheet oriented – most of its configu-
ration tables is laid down in tables – an application can be constructed from
these tables, where the user has the convenience to be able to use Excel as a
powerful engineering environment.

The open architecture of Excel allows you to use the powerful environment of
Excel, as well as additionally developed tools and wizards. You may use VBA

and/or VB for development of your own assistants, tools and wizards. What
other SCADA/HMI software development tool allows you to do just that?

In the menu of eXLerate you will be able to locate all wizards and tools.

The following wizards are currently defined:

Figure 3-1: Available Wizards in eXLerate

3-30
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Introduction

 Tag & Object Wizard
This is a development aid that creates functionality on basis of tag data-
base definitions, such as worksheet functions, and alarm functionality.

 Calculation Wizard
This is a wizard that creates calculation object names for you in a special
background worksheet, called a calculation sheet.

 Color Wizard

The color wizard is a wizard that is able to efficiently work with color
palette tables in eXLerate.

 Button Wizard
The Button Wizard creates menu navigation functionality in your applica-

tion, based on the Button Table.

 Language Wizard
The Language Wizard creates a translation table in which applications can
define system texts in multiple languages.

The following options are available under the tools section in eXLerate:

Figure 3-2: Available Tools in eXLerate

Tools

 Shape Property Tool
This tool helps you in finding shapes over various worksheets, and their
properties as required for animations.

 Name Definition Tool (Ctrl+E)

The standard Excel dialog for names lacks functionality that you rather
would like to include during application engineering. This tool offers an
alternative for the built-in names dialog of Excel.

eXLerate 2010 advanced topics reference
3-31

Chapter 3 - Wizards and Tools - Introduction

 Color Palette Tool
This is a tool showing you the relation between a color palette index
number, and the actual color for shape animations.

 Alarm Tree Tool
This tools visually shows the hierarchial alarm tree structure.

Generate

 Generate Report
This option allows you to quickly generate a report for engineering
purposes.

 Generate HTML

This option generates the HTML pages.

Communications

 Browse OPC Servers
This tool allows you to browse OPC servers and paste Item-ID’s into the
application.

 Communications Options

Displays the communication options.

Protected Cells

 Mark Unproteced Cells (Ctrl+U)
Marks all unprotected cells in a worksheet.

 Unmark Unproteced Cells (Ctrl+Shift+U)
Un-marks all unprotected cells in a worksheet.

Miscelaneous

 Remove External links
Removes all external links in an application workbook.

 Reset Historical values
Reset the historical values of the current application. All retentive
intermediate results as maintained in the registry are reset.

 Recalculate Application (Ctrl+R)
Re-calculates the whole application.

3-32
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Introduction

To the right of the ‘Tools’ button, two more tools are visible:

 Import Sheets
Imports sheet into the application.

 Advanced Replace
Finds & replaces cells, names, objects, etc...

In the following sections, all wizards and tools will be discussed.

eXLerate 2010 advanced topics reference
3-33

Chapter 3 - Wizards and Tools - Wizards

Wizards

A Wizard in eXLerate is a development assistant that generates parts of an

application for you. For each wizard, certain options can be defined prior to
actually running the wizard. Each option is presented to you in an option step.
You may use the <Ctrl-TAB> key, or the ‘<Back’ and ‘Next>’ buttons to
browse through the steps.

When all option steps have been defined, you may actually run the wizard in the
final step. In this last step, a list-box is presented in which the progress of the

wizard is displayed, and other messages are reported. Errors during this process
are also reported to eXLerate’s event logger.

The option buttons in each step will be remembered the next time that you run
the wizard, so simply by pressing <Enter> the wizard may be re-run using the

same options as the last time the wizard was invoked.

Tag & Object wizard (Ctrl+W)

The tag and object wizard is an important assistant in the automation of
application engineering. Various entities in an application can be created using
the tag & object wizard:

 Object names / calculations
The tag database contains tag definitions. Although cells in the tag
database may be directly referred to, it is much better to use logical
object names. These names, and the required subsequent calculations
may be created manually, or the tag and object wizard is able to generate

such names and calculations for you – automatically.

 Alarms
The alarm are automatically created for you when running this wizard,

based on alarm properties of a tag at the tag database.

 Cell error checks
Rather than checking worksheet cells for errors manually, the Tag &
Object wizard scans through all worksheets and reports errors for you.

These three components may be all generated in a single action, or
alternatively, step by step. The way the components are updated/generated is
defined from a typical wizard dialog, where all steps are defined, then finalized,
after which the generation process starts.

3-34
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Wizards

The tag & object wizard is started from the eXLerate ribbon or using Ctrl+W, as
follows:

Figure 3-3: Invocation of the Tag & Object Wizard

The following wizard dialog appears, when the Tag & Object wizard is actually
started:

Figure 3-4: Step 1/4 of the Tag & Object wizard

In this step, you define if the results from the previous generation are to be
maintained, or to be removed prior to generating new names and built-in
calculations.

You should remove previously defined object names and built-in calculations if

you have changed the following:

 If you have added, or removed a tag in the tag database;

 If you have modified a field in the tag database that has an associated
object name;

 If you have modified periodical calculations (at the Interval Table and/or

the tag database.

eXLerate 2010 advanced topics reference
3-35

Chapter 3 - Wizards and Tools - Wizards

In the following step, the generation of new names and objects is defined:

Figure 3-5: Step 2/4 of the Tag & Object wizard

You have an option to create all names/calculations, even if the name/object is
not used in the application (including report templates), or to only create the in-
use object names.

When you are developing an application, you might want to create all object
names and built-in calculations, so objects that will be (but aren’t yet) referred

to in display pages, report templates or calculation sheets, are already defined
for you.

When your application is completed as far as using object names, optimize your
application by creating only objects that are actually used in an application. This
option reduces your application size.

If you have removed existing object names and built-in periodical calculations in
the previous step, you want to regenerate these objects in this step.

Only in special situations you might want to remove all object names.

In step 3/4, the alarm list may be generated:

3-36
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Wizards

Figure 3-6: Step 3/4 of the Tag & Object wizard

The alarm list is a list, which is generated in worksheet: ‘xAlarmList’. This alarm
list is required when you want to include alarm management in your application.

If you have modified alarm properties of a tag in the tag database, you should
include the generation of a new alarm list using this step.

The next step allows you to check for cell faults in your application. It looks as

follows:

eXLerate 2010 advanced topics reference
3-37

Chapter 3 - Wizards and Tools - Wizards

Figure 3-7: Step 4/4 of the Tag & Object wizard

As you application grows, and if any of the previous steps could introduce large

changes in you application, checking the application for cell faults is encouraged.

NOTE: An application should not contain any #NUM, #REF, or #VALUE

faults, because Excel might become instable when such faults are
present in an application.

In a well-designed and well-programmed application however, such faults can be

easily avoided. It is therefore not necessary to check the application every time
the Tag & Object wizard is invoked.

When all five steps have been included/excluded as required, ‘Run’ will actually
start the generation process. This may take a short period of time, depending on
the size of the application and the speed of your computer.

The progress of the wizard is displayed in a progress-bar. When the wizard has
been completed, the generated messages during the generation process may be
inspected using the list-box, as follows:

3-38
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Wizards

Figure 3-8: Tag & Object wizard progress

You can use the scroll-bar at the right of the list-box to see all messages.
Using the ‘Close’-button, you can inspect your application for the results.

Calculation wizard

The calculation wizard in eXLerate is used to create object names on a
calculation worksheet. To learn more about using calculation sheets in an

eXLerate application, refer to section ‘Calculation sheets’ on page 1-16.

The calculation wizard expects the worksheet layout as described in this section.

The calculation wizard can only be invoked when the currently selected
worksheet is a calculation worksheet. If this is not the case, an error message is
displayed. A worksheet is a calculation sheet when the name starts with ‘xCalc’,

and where on the third row a header line is defined containing fields: ‘Group’,
‘CalcTag’, ‘Description’ etc.

Figure 3-9: Invocation of the Calculation Wizard

eXLerate 2010 advanced topics reference
3-39

Chapter 3 - Wizards and Tools - Wizards

When started from the eXLerate ribbon, the following wizard dialog is presented:

Figure 3-10: Step 1/1 of the Calculation Wizard

There are two options available:

 Calculation object names may be removed from the current calculation
worksheet

 New calculation object names may be created, after existing object names
have been removed.

When the active sheet in Excel is not a calculation worksheet containing the
layout as required, an error message is displayed when the calculation is
invoked with the ‘Run-button:

When the active sheet is a calculation worksheet, the sheet is processed

normally. A calculation worksheet is a worksheet with a layout as given in:
‘Figure 1-2: Calculation worksheet layout’ on page 1-17.

The progress bar indicates the progress in removal/creation of the object names.
After a few seconds, the wizard should be completed without any errors, after

which the dialog may be closed to inspect your application for the created
results.

3-40
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Wizards

Color Wizard

The color wizard in eXLerate is used to update the color palette in Excel with the

colors defined in eXLerate.

The current color settings in Excel may be created from a special worksheet
table, which is called the Color Table. On the other hand, the Color Table may be
created from the current color settings in Excel.

The Color Table
The Color Table in eXLerate is located in the ‘xTables’ worksheet, and has the
following layout:

Figure 3-11: Color Table layout

As with most configuration tables in eXLerate, the table starts with a table
identifier (‘rColorTable’) which defines which Excel range is associated with the
table, a number of field headings (dark red row in the example above), and the
data in the table itself below the header line.

The color table has 64 rows, and 6 columns, each with a specific function.

eXLerate 2010 advanced topics reference
3-41

Chapter 3 - Wizards and Tools - Wizards

The following columns are defined:

 ID
This column contains the ID of the color entry, from 0 thru 63. This value

is the color palette index number to be used for shape animations.

 C
This column contains a color-formatted cell containing the actual color as
defined by the R, G, and B columns.

 R, G, and B
These columns contain the numerical value of the RGB-color of the entry.
In Windows, colors may be expressed in an RGB value, where each
component red, green, and blue are represented with a numerical value of
0..255. Pure black is represented as {0,0,0}, while pure white is repre-

sented as {255,255,255}.

 Comment
Each color in the color table in eXLerate is used for a distinct property in
the application. For example, pipe symbols with flowing fluids have a color
index of 12, and pipe symbols without flowing fluids have a color index of

11. When in an application all pipe colors need to be modified, only one
single entry is to be updated, and not the pipe shape objects itself. In this
column, the usage of the colors are defined.

The color wizard may be started as follows in eXLerate:

Figure 3-12: Invocation of the Color Wizard

Color Wizard

3-42
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Wizards

When this menu option is selected, the following dialog appears:

Figure 3-13: Step 1/1 of the Color Wizard

There are two options available:

 Generate a new color palette table, and update system colors
This option is able to generate a complete new color palette table, in case

your application did not contain a color palette table.

 Update the system colors only
System colors may be updated as well. When the RGB-settings of an entry
in the color palette table are empty, the wizard pastes the currently
defined color in the table at that entry (which may be thought of as
reading colors). When the color is defined, and the RGB-settings contain

valid numerical values, the currently defined colors are updated from the
table (which may be considered as writing colors).

The color wizard may be started using the ‘Run’-button:

eXLerate 2010 advanced topics reference
3-43

Chapter 3 - Wizards and Tools - Wizards

Button Wizard

The Button Wizard in eXLerate generates the required functionality for the

menu-navigation buttons at the bottom of each display page, as per Button
Table. The Button Table is located in worksheet ‘xTables’, and is described in
Volume I, ‘Menu Navigation’, ‘The Button Table’.

The Button Wizard should be invoked when the Button Table has been modified,
for example when a new display page has been added, or when the menu
navigation keys for a display page have been modified. The Button Wizard is

started from the eXLerate menu as follows:

Figure 3-14: Invokation ofthe Button Wizard

When started, the Button Wizard looks as follows:

Figure 3-15: Step 1/1 of the Button Wizard

Button Wizard

3-44
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Wizards

When the Button Wizard is run with ‘Run’, the following dialog appears:

Figure 3-16: Button Wizard completed

The following actions take place:

 When at the referred display page as per Button Table, the button objects
are defined, its contents are updated according to the Button Table.

 When in the referred display page no button bar is present (yet), the
button bar and corresponding frame are copied from the ‘Template’
worksheet, after which its contents is updated according to the Button
Table.

 All required VBA subroutines for the menu navigation is generated as well,

in module ‘modButtons’. Since this module is erased each time the

Button Wizard is invoked, it should not be modified manually. If a user
wants to manually modify certain subroutines, these should be moved to

another VBA module. In the ‘MyProject’ project template, ‘modAlarms’ is

used for this purpose.

eXLerate 2010 advanced topics reference
3-45

Chapter 3 - Wizards and Tools - Wizards

Language Wizard

The Language Wizard in eXLerate generates the required functionality for the

translation of product related texts.

The Language Wizard should be invoked when initially implementing multi-
lingual texts or after an upgrade of the product software. When initially running
the Language Wizard it will generate a new ‘xLanguage’ worksheet. Since the
product is always being improved, it is possible that new texts become available
for translation in later revisions. In that case the Language Wizard should be

invoked in order to add the new translatable texts to the ‘xLanguage’ worksheet.
Existing translated texts will always remain unaffected by the Language Wizard.

The Language Wizard is started from the eXLerate menu as follows:

Figure 3-17: Invokation of the Language Wizard

When started, the Language Wizard looks as follows:

Figure 3-18: Step 1/1 of the Language Wizard

Language Wizard

3-46
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Wizards

When the Language Wizard is run with ‘Run’, the following dialog appears:

Figure 3-19: Language Wizard completed

The following actions take place:

 Create new ‘xLanguage’ worksheet when it doesn’t already exist.

 Update ‘xLanguage’ worksheet when it already exists. Any new
translatable texts that have been added to the new revision will also be
added to the ‘xLanguage’ worksheet. Existing texts will always remain
unaffected.

eXLerate 2010 advanced topics reference
3-47

Chapter 3 - Wizards and Tools - Tools

Tools

In an application, there are many tasks with which eXLerate assists you. Most
Tools have an associated pop-up dialog, while other tasks are directly used from
the Tool menu in eXLerate.

Shape Property Tool

This tool helps you in finding shapes over various worksheets, and their
properties as required for animations. The shape property tool is created to help
you in determining the current properties of a shape for animation purposes.

For example, if you want to animate a bar graph, you will need to determine its
current size and location on a display page to add animated data to the shape at

the Animation Table.

Using the shape property tool, you are able to copy all parameters required for
animation from the shape to the table.

The shape tool is selected from the Tools option in the eXLerate ribbon:

Figure 3-20: Selection of the Shape Tool

The Shape tool looks as follows:

3-48
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Tools

Figure 3-21: Shape properties Tool

On the dialog, a list-box is available with which the animation properties of some
or all of the present shapes can be viewed. Each of these properties is presented
on a button. The left-position, top-position, shape width, shape height, rotation
angle, and the current shape colors are available for copying. Using the ‘Hide’-

button, visible shapes can be made invisible, and hidden shapes can be made
visible.

When the user clicks the appropriate button, the associated property may be
copied to the animation table, at the corresponding column. All properties may
be chosen to copy to the table when the ‘All’-button is clicked.

The Shape Tool searches for the appropriate location of the shape in the
Animation Table. At the right list-box, a cross-reference shows what other
display pages contain the selected shape. At the top, the sheet selection list-box
presents all worksheet containing shape properties.

With the ‘Delete’-button, the selected shape may be removed from the selected
worksheet.

The ‘Show All Shapes’ check box is used to show only shapes containing non-
space names. A shape with one or more spaces in the name is considered as a
supporting shape, for example a line (e.g. ‘AutoShape 45’, or ‘Line 67’), whereas
shapes for animation purposes are assumed to have a name without space
characters (e.g. ‘MOV_123’ etc.).

The ‘Copy to Animation Table’ checkbox is used to either copy the selected
(clicked) property directly in the Animation Table, or to copy the value to the
clipboard only, where a user may use <Ctrl-V> to retrieve the value from the

clipboard. This may be used for indirect usage of the parameter, for example in
a formula.

eXLerate 2010 advanced topics reference
3-49

Chapter 3 - Wizards and Tools - Tools

Name Definition Tool

Prior to Excel 2007, the dialog for managing names in Excel was not so user
friendly. Because of this, eXLerate supports its own Name Definition Tool. In
eXLerate you can choose whether to use the standard Excel Names Manager, or
the eXLerate Name Definition Tool.

The Name Definition tool can be selected from the “Tools” option.

When selected, the following dialog appears:

Figure 3-22: Names Tool

The names list-box may be opened, which looks as follows:

Figure 3-23: Names Tool with opened name list-box

Using the ‘Go To’- and ‘Go Back’-buttons of this Names Tool you are able to
jump to the location of the reference, and to return to the last position. If you
still prefer the Excel names dialog, please feel free to do so. This tool is only
optional!

Color Palette Tool (Ctrl+L)

The Color Palette Tool is a tool showing you the relation between a color palette
index number, and the actual color for shape animations. It is selected using the
<Ctrl-L> shortcut key directly, or selected from the eXLerate Tools menu, as

follows:

3-50
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Tools

Figure 3-24: Selection of the Color Palette Tool

The following dialog appears:

Figure 3-25: Color Palette Tool

eXLerate 2010 advanced topics reference
3-51

Chapter 3 - Wizards and Tools - Tools

When a color button is clicked, its number is either copied to the clipboard, or
copied to the active worksheet cell. The actual action depends on the value of
the checkbox on the dialog.

From this dialog, the Color Wizard may be also started.

Alarm Tree Tool (Ctrl+M)

This tool allows the user to browse through the alarm directory tree in the
application. The alarm directory tree is defined in the tag database, where a tag

is associated with an alarm group, and the alarm parent-child definition table, as
defined in range ‘rAlarmGroupsTable’ on the ‘xTables’ worksheet.

To start the tool, press <Ctrl-M>, or use the eXLerate Tools sub-menu:

Figure 3-26: Starting the Alarm directory tree tool

When selected, a dialog as below appears, with which the user can browse, and

verify that the currently defined alarm directory tree has the required parent-

/child relation as set up in the Alarm group table.

3-52
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Tools

Figure 3-27: Alarm Directory Tool

Generate Report

The “Generate Report” option displays the list of configured reports which may

then be printed or previewed.

Figure 3-28: Generate Report

Reporting is discussed in detail in the eXLerate Reference Manual Volume 1.

Generate HTML

The “Generate HTML” option generates the HTML pages for web-server support.

You can find the output files in “C:\XLRX\HTML”.

HTML Generation is discussed in detail in the eXLerate Reference Manual Volume
1.

eXLerate 2010 advanced topics reference
3-53

Chapter 3 - Wizards and Tools - Tools

Browse OPC Servers

The “Browse OPC Servers” option allows you to browse OPC Servers. This dialog
allows you to select OPC Item ID’s and paste them into the application.

OPC and communications are discussed in greater detail in the eXLerate
Reference Manual Volume 1.

Communications Options

This option opens up the Communications Options dialog. You can use this
dialog to enable/disable diagnostic logging of the communication drivers.

The communications options are discussed in greater detail in the eXLerate

Reference Manual Volume 1.

Show Control Center

This option Shows the Control Center. The shortcuts, users and global settings

may be edited from within the Control Center which is discussed in eXLerate
Reference Manual Volume 1.

Unprotected cells marker (Ctrl+U)

Worksheet cells play a vital role in an application. A user may be enabled to edit
the value of a worksheet cell, depending on the settings of the Worksheet Table.
Unfortunately it is not very straightforward to see which cells are protected in
Excel, and which cells are unprotected. You may select a single cell, and with the
tool as displayed at the left, from the eXLerate ribbon you can view the

protection status of this cell.

Alternatively, the cell-formatting dialog in Excel displays this status as well:

3-54
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Tools

Figure 3-29: Cell formatting dialog showing the protection status

Using the ‘Mark Unprotected cells’ (Ctrl+U) option from the eXLerate Tools
sub-menu, the protection status of all worksheet cells is visualized rather than

the individual status.

When activated, each unprotected cell is marked as follows:

Figure 3-30: Marked unprotected cells

The marking can be un-done using the ‘Unmark Unprotected cells’ option
from the eXLerate tools sub-menu, or using the <Shift-Ctrl-U> shortcut key.

Unprotected cells

eXLerate 2010 advanced topics reference
3-55

Chapter 3 - Wizards and Tools - Tools

Remove External links

When cells or entire worksheets are copied between workbooks, Excel might link

the copied cells or worksheets to the original workbook. These links can be
removed using this option:

Figure 3-31: Removing external links

Linked applications should be avoided when possible. External links may be also
inspected or manually removed using the Excel ‘Edit Links’ option from the
‘Data’ ribbon.

Reset Historical values

This option from the eXLerate Tools sub-menu resets the historical values of the
current application. All retentive intermediate results that are maintained and
updated in the registry are reset.

Remember, these intermediate values relate to period dependent moving

averages, weighted averages, and latch registers.

This tool does not affect trending and log files, since these files exist on disk,
and have another mechanism of monitoring their size.

Recalculate Application (Ctrl+R)

When you modify formulas you may want to re-calculate the application to apply
the changes. Many worksheet functions in eXLerate take a trigger-argument of
some kind. This trigger argument ensures that a function is called periodically,
but not constantly. Some triggers such as ‘xNow.Time’ are executed every
second, while others like ‘xAutoRecalc’ are updated only at startup or when
starting/stopping communications.

Recalculate Application ensures that all functions which are using the
‘xAutoRecalc’ trigger are re-calculated.

3-56
 eXLerate 2010 advanced topics reference

Chapter 3 - Wizards and Tools - Tools

Import Sheets

This option display the ‘Import Sheets’ dialog which allows you to import sheets

into your application.

Figure 3-32: Import Sheets

At the ‘From workbook’ option, select the workbook from which you wish to
import the sheets. Use the ‘…’ button to load a workbook if it isn’t already
loaded. Select the sheet you wish to import. Hold the ‘Ctrl’ or ‘Shift’ key if you

want to select multiple sheets.

eXLerate 2010 advanced topics reference
3-57

Chapter 3 - Wizards and Tools - Tools

Advanced Replace

Advanced Replace offers the ability to not only find & replace cell values &
formulas, but also names, styles, objects (e.g. shapes) and macro names:

Figure 3-33: Advanced Replace

eXLerate 2010 advanced topics reference
4-59

Chapter 4 - Controls - Introduction

Chapter 4 - Controls

Introduction

eXLerate supports a set of controls for alarm management and trending
purposes. These controls share a lot of functionality, which is described in this

chapter.

Control Overview

Viewing trend-data in eXLerate can be done by inserting Controls on worksheets
or VBA forms. These controls can then be linked to each other in a modular

fashion. Four types of controls are available which are described in more detail
in the following chapters:

Control Description

exAlarmSummary Control which displays the alarm summary.

exTrendChart Chart control which shows the trend-data and allows users to navigate in
time. Supports a data cursor for accurately viewing the trend value.

exTrendPenSelector Control for viewing and modifying the visible pens of a trend chart control.

exTrendNavigator Optional control which can be used to quickly navigate through large amounts
of trend data.

exListView Generic list-view control.

Table 4-1: Control Overview

Inserting Controls

To insert a control on a sheet, click one the following buttons on the left toolbar:

Figure 4-1: Inserting Controls on Worksheets

4-60
 eXLerate 2010 advanced topics reference

Chapter 4 - Controls - Modifying Controls

To move or resize a Control, click the design-mode icon at the top of “Insert”
section. When finished click the button again to exit design-mode.

Figure 4-2: Design mode

To insert a trend control on a VBA form, enable the Toolbox and select one of
the controls:

Figure 4-3: Inserting on VBA forms

Modifying Controls

Controls can be customized to a very high extend. The properties of a control
can be changed from the Properties Dialog. This dialog is accessible by clicking
the icon in the right-top of the control. The properties button is only accessible
when the design-mode is turned off.

Figure 4-4: Properties button

In most Controls it is also possible to double-click the control itself to open the

Properties Dialog. For instance, double-clicking the left-axis on an exTrendChart
control will open the Properties Dialog and select the “Left axis” tab.

eXLerate 2010 advanced topics reference
4-61

Chapter 4 - Controls - Control Properties

Control Properties

Backgrounds

Backgrounds are used when filling a region with a certain background. A

background can consist of a single color, gradient colors, a pattern or a picture.
The type can be changed by selecting one of the Type options:

Figure 4-5: Background types

Solid Color
When “Solid color” is selected the following options become available:

Figure 4-6: Solid background color

Click to select
custom colors

4-62
 eXLerate 2010 advanced topics reference

Chapter 4 - Controls - Control Properties

The standard color table can be used to quickly select a color. The “Red”,
“Green” and “Blue” options can be used to change the individual RGB values of
the color. Click on the color-bar to open the default Windows Color Picker. When
the transparency is changed, the sample shows the results on a white

background.

Gradient colors

Gradient colors may be used to create advanced graphical effects. A gradient

always consists of 2 or more colors. Each of these colors can be selected in the
“Elements” list:

Figure 4-7: Gradient background colors

The “Gradient angle” may be used to change the direction of the color flow. By
default the angle is 0 which causes a color to flow from left to right. To change
the color flow from top to bottom, change the angle to 90.

Click to select
other gradient
color element

Click arrow to
rotate gradient
90 degrees

eXLerate 2010 advanced topics reference
4-63

Chapter 4 - Controls - Control Properties

Pattern

Patterns consist of both a foreground and background color. The pattern

appearance may be changed by selecting the “Pattern style” option.

Figure 4-8: Background pattern

4-64
 eXLerate 2010 advanced topics reference

Chapter 4 - Controls - Control Properties

Picture

When “Picture” is selected the following options become accessible:

Figure 4-9: Background picture

Click the ‘Browse…’ button to select a picture from disk. The following picture
formats are supported: BMP/GIF/JPG and ICO. Pictures are internally always
stored as JPG which reduces the file-size dramatically.

The “Colors” option may be used to draw the picture in Grayscale rather than
full-color.

The “Brightness” and “Contrast” options may be used to lighten or darken the
picture. If for instance a picture is used as the background of the chart- or plot-
area the trend-lines may become unreadable. In this case the picture can be
made lighter by increasing the brightness and decreasing the contrast. Generally

speaking the brightness should be increased the same amount as the contrast is
decreased. The example above shows a picture with equally
increased/decreased brightness and contrast settings.

eXLerate 2010 advanced topics reference
4-65

Chapter 4 - Controls - Control Properties

Borders & Lines

Most properties that support a background also support a border. A border
consists of a weight, a style, a color and transparency:

Figure 4-10: Borders & Lines

Margins

Margins are used for both the Trend Chart Plot Area and labels:

Figure 4-11: Margins

4-66
 eXLerate 2010 advanced topics reference

Chapter 4 - Controls - Control Properties

Fonts

The following font properties are supported:

Figure 4-12: Fonts

eXLerate 2010 advanced topics reference
4-67

Chapter 4 - Controls - Control Properties

Formats

Formats can be used to format numbers and/or date-time values. The example
below shows the supported formats of a date-time value. The keyword ‘{CR}’
can be used to create a carriage-return or line-break as shown below:

Figure 4-13: Formats

4-68
 eXLerate 2010 advanced topics reference

Chapter 4 - Controls - Control Properties

Themes

eXLerate supports several themes as shown below:

Figure 4-14: Themes

The theme is used for drawing the toolbar and other controls such as list
controls. Three font-sizes are supported: Normal (8 pt), Large (10 pt) and Extra
Large (12 pt).

eXLerate 2010 advanced topics reference
4-69

Chapter 4 - Controls - Control Properties

Templates

When a control has been configured, its settings may be saved to a template file

for re-use purposes.

Figure 4-15: Templates

Select a template
from the list and
click the “Load”
button.

To create a new
template, click the
“Save As…” button.

4-70
 eXLerate 2010 advanced topics reference

Chapter 4 - Controls - Control Properties

 List Columns

The list shows all the columns of the list control. The properties are shown as
columns of the list. Which columns are visible and the width of the columns can
be configured in the properties dialog:

Figure 4-16: List Columns

Click the option
to show or hide
the column.

Up and down
buttons can be
used to sort the
columns.

The width can
be changed
when a column
is selected.

eXLerate 2010 advanced topics reference
5-71

Chapter 5 - Alarm management - Introduction

Chapter 5 - Alarm management

Introduction

Alarm management in eXLerate has already been introduced in the tutorial
chapter, in the Application Reference Manual, and in the description of the tag

database, in the section on alarming related fields.

You have perhaps noticed at these introductory pages that alarm functionality
may be automatically added to your project when you have alarm fields defined
in the tag database.

Alarm page types

There is a distinct difference between the Alarm History, and the Alarm

Summary, which are the two alarm entities maintained by eXLerate. The alarm
history is a log of alarm events that have occurred over a period over time,
while the alarm summary contains an actual list of tags with defined alarm
properties.

Both types of lists are available in eXLerate as worksheets. In addition, alarm
event messages are sent to the system event logger of the eXLerate Control

Center where such messages may be printed to the alarm printer, stored on
disk, and viewed in the event log.

Alarms may be hierarchically grouped, like a directory structure. There is
functionality to acknowledge an alarm or an alarm group, or all alarms.

There may be various alarms simultaneously defined for a single tag. Alarm

limits may be entered as constants at the tag database; eXLerate will
automatically make these alarms limits retentive.

Best of all is that this alarm functionality is automatically available in your
project.

The way the alarm summary and alarm history pages look like may be adapted
to your own requirements.

You may add other alarm functionality via the VBA and worksheet interface of
Excel, with one of the available procedures and alarming options. For example
during startup you are able to define a delay after which alarming becomes
active, or use different alarm settings at startup.

5-72
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Alarm components

Alarm components

Alarm management in eXLerate is facilitated by various items:

 The tag database
Since alarm properties of a tag are defined at the tag database, it is the
tag database that plays a vital role in alarm configuration. When alarms
have been defined at the tag database, the Tag & Object wizard should be
activated to generate the actual alarm summary list.

 Alarm Group Table
Hierarchical alarm groups are defined in a simple table, the Alarm Group
Table. This table is located in your project workbook, in worksheet
‘xTables’.

 Alarm Summary Control
This is a control which displays a list of alarms and optionally the alarm
tree. Alarms can be acknowledged, suppressed and edited from within the
control.

 Worksheet: AlarmHistory
In this worksheet, a history of the latest 40 alarm messages is presented.
The alarm history as sent to the system event logger is also available to
the user, but this history contains other event messages as well, such as
process startup- and shutdown messages.

 VBA and worksheet functions
There are various functions that can be called from VBA, with which
alarms can be groups-wise acknowledged. Other functions can be called to
define certain alarm options.

 Alarm dead-band
Additional information about the dead-band which can be configured in

the tag database.

 Other alarm options

Other options such as auto-acknowledgement and alarm blocking.

eXLerate 2010 advanced topics reference
5-73

Chapter 5 - Alarm management - Tag database

Tag database

The tag database plays a vital role in alarm definitions for a tag, because an

alarm for a tag is configured at the tag database.

The fields at the tag database which are used for alarming are already described
in section ‘Alarming related fields’ of the Application Reference Manual.

Alarm Group Table

Alarms may be logically grouped together in an Alarm Group. User acknowledge-
ment of alarms may be done group-wise.

The internal hierarchy of existing alarm groups is defined in the Alarm Group

Table, where a ‘Parent-Child’ relation is defined between alarm groups.

The Alarm Group Table is a standard eXLerate table located in the ‘xTables’
worksheet, and looks as follows:

Figure 5-1: Alarm Group Table

The Alarm Group Table begins with the range name: ‘rAlarmGroups’, followed by

a two-column table. At the left hand side of the table, the Parent is defined. At
the right hand side of the table, the Child is defined.

When this table is not present, no hierarchy between alarm groups is defined.

5-74
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Alarm Summary Control

Alarm Summary Control

Introduction

The Alarm Summary Control can be used to visualize and modify alarms. It
consists of three parts, an alarm group tree, a list showing the actual alarms and
a toolbar:

Figure 5-2: Alarm Summary Control

The control is fully customizable as will be described in the following sections.

The control can be inserted on a worksheet or VBA form by clicking the
icon.

Alarm Groups

The left part of the control contains all configured alarm groups. The tree can be
used for quickly navigating through the alarm groups. Additionally, the icons of
the alarm groups indicate whether an alarm is active in the alarm group.

eXLerate 2010 advanced topics reference
5-75

Chapter 5 - Alarm management - Alarm Summary Control

Figure 5-3: Alarm Groups Tree

When an alarm group is selected, all alarms that are part of that alarm group or
any sub-groups are shown in the alarms list.

The following global properties are supported for alarm groups:

Figure 5-4: Alarm Groups Properties

The alarm group indicators can be configured on a per state basis:

Figure 5-5: Alarm Group State Properties

When at least one alarm exists in the alarm group, which is in a particular state,
the image of that state is used. The priority of the states is shown above. The

topmost state (“Active & Unacked”) has the highest priority.

Buttons for
expanding or
collapsing whole
alarm group tree. Selection indicates

which alarms are
shown in the
alarms list.

Icons indicate
status of all alarms
in the group or any
sub-groups.

5-76
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Alarm Summary Control

Alarm List

The alarm list shows all alarms of the currently selected alarm-group and filter:

Figure 5-6: Alarm Summary List

The columns of the list can be clicked in order to sort the alarm list. When the
sort order is set to a specific column, a small arrow appears in that column.
When the currently sorted column is clicked, the sort order is reversed.

The following columns are supported by the alarms list:

Column Description

ID Unique ID that has been assigned to each alarm.

State Set of icons which indicate the status of the alarm:

 Alarm is active.

 Alarm has been acknowledged.

 Alarm is blocked (too many alarm state changes have occurred).

 Alarm is being suppressed.

 Alarm has been permanently disabled.

Timestamp Date and time at which the alarm was last changed.

Name Name of the tag (or alias when specified).

Location Name of the alarm group

Priority Alarm priority (lower value = higher priority).

Type One of the following alarm types:
“Status Alarm”
“Low Alarm”
“LoLo Alarm”
“High Alarm”
“HiHi Alarm”

Description Alarm description when specified, otherwise tag description.

Limit Current limit value (no limit is shown for status alarms).

Deadband Deadband value or nothing when no deadband configured in the tag database.

LastValue Last value of tag.

Units Engineering units.

Delay Alarm delay or nothing when no delay configured in the tag database.

BlockCount Blockcount of the alarm. When max is reached, the alarm is blocked and will stop
changing states until acknowledged.

eXLerate 2010 advanced topics reference
5-77

Chapter 5 - Alarm management - Alarm Summary Control

Column Description

Format Format of the tag or nothing when no format configured in the tag database.

Table 5-1: Alarm Summary Columns

The colors used in the alarm list can be configured on a per-state basis:

Figure 5-7: Alarm List Colors

When alarms are animated, the background and text colors are switched to

create a blinking or toggle-effect.

The font used by the alarm list can be changed to any desired font:

Figure 5-8: Alarm List Font

Alarm States

Alarm colors and the alarm group indicators can be configured on a per-state
basis. A state is a combination of one or more properties (e.g. “In Alarm”,
“Acked”, etc..). If an alarm has all the properties which are defined in the state,
then that alarm is effectively in that “state”. For instance, if an alarm is in alarm,

not acknowledged and not blocked, suppressed or disabled, then it is considered

5-78
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Alarm Summary Control

to be “Active & Unacked”. On the other hand, if an alarm is disabled then it is
considered to be in the state “Disabled” no matter its other properties.

The order of the states is also used to determine which colors to use when

drawing an alarm and also to determine which alarm-group indicator to use.

The following states are supported:

State Rules

Active & Unacked Alarm must be active, not acknowledged, not suppressed, not blocked
and not disabled.

Active & Blocked Alarm must be active, blocked, not suppressed and not disabled.

Active & Acked Alarm must be active, acknowledged, not blocked, not suppressed and
not disabled.

Inactive & Blocked Alarm must be inactive, blocked, not suppressed and not disabled.

Inactive & Unacked Alarm must be inactive, not acknowledged, not blocked, not suppressed
and not disabled.

Inactive & Acked Alarm must be inactive, acknowledged, not blocked, not suppressed and
not disabled.

Active & Suppressed Alarm must be active, suppressed and not disabled.

Inactive & Suppressed Alarm must be inactive, suppressed and not disabled.

Disabled Alarm must be disabled.

Table 5-2: Alarm States

Filters

Filters can be used to limit the alarms visible in the alarms list. The filters can be
selected using the pull-down button in the toolbar:

Figure 5-9: Using Alarm Filters

eXLerate 2010 advanced topics reference
5-79

Chapter 5 - Alarm management - Alarm Summary Control

Initially 3 filters are available. These filters can be extended and/or modified
using the filters property dialog:

Figure 5-10: Configuring Alarm Filters

To modify an alarm filter, select the filter and click the “Properties” button. The
following dialog shows all the supported properties of a filter:

Figure 5-11: Alarm Filter Properties

5-80
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Alarm Summary Control

Real-time mode

The alarm summary control can be used in two modes: real-time & diagnostical.
The real-time mode can be configured to always show the alarms according to a

specific alarm-group, filter and sort-order. When the operator changes one of
the previous settings, real-time mode is automatically disabled. Real-time mode
can be configured to automatically activate after x seconds of user-inactivity.
This option is usefull when making sure that the alarm summary is always
showing the active alarms even if the operator has selected another alarm
group, filter or sort order and left the system like that.

Whether real-time mode is enabled or not can be regonized by state of the
button in the toolbar.

The following properties are supported for real-time mode:

Figure 5-12: Real-time Mode Properties

Acknowledgement

Alarms can be acknowledged using 3 buttons in the toolbar:

Figure 5-13: Alarm Acknowledgement Buttons

The buttons are enabled only when acknowledgement is possible for the alarms.

If the buttons are disabled, the alarms have already been acknowledged or no
alarms have been selected. When an alarm has been acknowledged, the icon
is shown in the state column.

Acknowledge
selected alarms

Acknowledge

all alarms

Acknowledge
all alarms of
the selected

groups

eXLerate 2010 advanced topics reference
5-81

Chapter 5 - Alarm management - Alarm Summary Control

Suppression

Alarms can be suppressed or un-suppressed using the 2 buttons in the toolbar:

Figure 5-14: Alarm Suppression Buttons

The buttons are enabled only when suppression/un-supression is possible for the

selected alarms. If the buttons are disabled, no alarms have been selected.
When the button is enabled and highlighted (see “Unsuppress” button in the
picture above), all the selected alarms have already been suppressed. Clicking

an already highlighted button, will cause all selected alarms to be un-
suppressed.

Editing Alarms

Alarms can be edited either by double-clicking them or using the button in the
toolbar. Using the button in the toolbar has the advantage that multiple alarms
can be selected for editing:

Figure 5-15: Editing one or more Alarms

Suppresses or
un-supresses

selected alarms.

Suppresses or
un-supresses all

alarms of the
selected group.

5-82
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Alarm Summary Control

When editing one or more alarms, the following dialog is shown:

Figure 5-16: Edit Alarms Dialog

In the top-part of the dialog, the user can enter new limits, a deadband and a
delay. Only those features are enabled which have actually been configured in
the Tag Database. For instance, if the “Delay” option is disabled it has not been
configured in the Tag Database.

The bottom-part of the dialog shows all alarms that have been selected for
editing and also shows the current settings of each alarm.

eXLerate 2010 advanced topics reference
5-83

Chapter 5 - Alarm management -

Security

Typically, not all users are allowed to suppress or edit alarms. The following

security settings can be configured:

Figure 5-17: Alarm Summary Security Settings

5-84
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Worksheet: Alarm History

Worksheet: Alarm History

The alarm history is a worksheet containing an historical list with events related

to alarm messages, or alternatively, a list with all events of the system. Both
types of event history windows are explained in this section.

A typical alarm history looks as follows:

Figure 5-18: Alarm history worksheet

The alarm history in the sample project is a worksheet containing alarm

messages in a non-scrollable window. It contains the last 42 messages from the
alarm manager. The alarm history may contain any amount of messages,
depending on the available window size. Another example is given below:

eXLerate 2010 advanced topics reference
5-85

Chapter 5 - Alarm management - Worksheet: Alarm History

Figure 5-19: An alarm history window with the 4 last alarm messages

A scrollable history window may be created by the application developer, as pro-
vided with the Alarm Summary in the ‘MyTemplate’ project.

Alarm History - Theory of operation (Advanced topic)

The alarm history can be created from the eXLerate worksheet function:

exGetAlarmHistory(n, xAlarm.InternalUpdate)

which returns an array with n alarm messages. The second argument to this
function ensures updates of the alarm history list. To insert an array formula
with 10 rows in a workbook, do the following:

 Type the function in a single cell
In this case, type:

=exGetAlarmHistory(10, xAlarm.InternalUpdate), and press

<Enter>. The function is available in a single cell only.

 Use the <Shift-Down> key to select 10 rows, while on the
worksheet function with the cursor

 Press <F2> to edit the formula

5-86
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Worksheet: Alarm History

 Press <Shift-Ctrl-Enter> to enter the array formula

You now have created an array function containing 10 rows.

eXLerate 2010 advanced topics reference
5-87

Chapter 5 - Alarm management - Worksheet: Event History

Worksheet: Event History

An event history is a worksheet containing an historical list with all system

events. The user is able to browse through the date, because all system events
in eXLerate are disk-based. Typically, all events are stored in directory
‘C:\XLRX\Logger’, where events are stored each day in a separate file.

A typical event history looks as follows:

Figure 5-20: Event history worksheet

With the buttons at the bottom of the page, the user can navigate through each
day of operation, and select the events. Alternatively, these events can be
printed on the event printer.

5-88
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Worksheet: Event History

Event History - Theory of operation (Advanced topic)

The event history can be created from the eXLerate worksheet function:

exGetEventHistory(n, iStart, strPath, Date, Filter,

Retrigger), which returns an array with n event messages of the specified

day.
See the worksheet function reference in the ‘Advanced Topics Reference’ manual
for further details on utilizing this worksheet function.

Event history buttons

The special buttons at the bottom of the event history worksheet are defined in
the Button Table, and contains date browsing functions.

The trending section of the Button Table contains the following definitions:

Worksheet Button Button text Key Procedure

AlarmHistory Button3 F3~<< {F3} dspAlmHist.FastBack

AlarmHistory Button4 F4~< {F4} dspAlmHist.Back

AlarmHistory Button5 F5~> {F5} dspAlmHist.Forward

AlarmHistory Button6 F6~>> {F6} dspAlmHist.FastForward

AlarmHistory Button7 F7~Select Date {F7} dspAlmHist.PickDate

AlarmHistory Button8 F8~Print Date {F8} dspAlmHist.PrintHistEventFile

Table 5-3: Event history button definitions

Internal VBA code
The procedure definitions from the Button Table above contain references to the
VBA-code at the specific event history worksheet, which is internally called:

‘dspAlmHist’..

The VBA code at this Excel worksheet contains the following macros/procedures:

Sub PickDate()

 frmEventDate.Show

End Sub

Sub FastBack()

 Range("HistEventDate").Value = Range("HistEventDate").Value - 7

 Range("HistEventCurr").Value = 0

End Sub

Sub Back()

 Range("HistEventDate").Value = Range("HistEventDate").Value - 1

 Range("HistEventCurr").Value = 0

End Sub

eXLerate 2010 advanced topics reference
5-89

Chapter 5 - Alarm management - Worksheet: Event History

Sub Forward()

 Range("HistEventDate").Value = Range("HistEventDate").Value + 1

 Range("HistEventCurr").Value = 0

End Sub

Sub FastForward()

 Range("HistEventDate").Value = Range("HistEventDate").Value + 7

 Range("HistEventCurr").Value = 0

End Sub

Sub Scrollbar_Change()

 On Error Resume Next

 Shapes("Scrollbar").ControlFormat.Max =

Range("HistEventMax").Value

End Sub

Sub PrintHistEventFile()

Dim sCommand As String

Dim sFileName As String

Dim fs

On Error Resume Next

 Set fs = CreateObject("Scripting.FilesystemObject")

 sFileName = Range("HistEventPath").Value & "\" & _

 Format(Year(Range("HistEventDate").Value), "0000") &

_

 Format(Month(Range("HistEventDate").Value), "00") &

_

 Format(Day(Range("HistEventDate").Value), "00") &

".log"

 If fs.FileExists(sFileName) Then

 sCommand = "Notepad /p " & sFileName

 Call Shell(sCommand, vbHide)

 Else

 MsgBox "No events available for this date", vbOKOnly,

"Printing Historical Events"

 End If

End Sub

Figure 5-21: Trending related VBA code

In the code above, which is copied from the ‘MyProject’ sample, various buttons
are linked to the above VBA macros.

5-90
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - VBA and worksheet functions

VBA and worksheet functions

The following functions are available for alarm management. These functions are
described in more detail in the Function Reference Manual.

 exAlarmCount(…)

This is a function returning the number of alarms in a specific mode, such
as all active alarms, or all unacknowledged alarms, for a specific alarm
group.

 exSetAlarmDeadband(…)

This is a procedure which allows the user to change an alarm dead-band
value. This advanced function is used in cases where alarm dead-band
values are set from within VBA and not directly via the tag database.

 exSetAlarmLimit(…) & exSetAlarmLimit2(…)

This is a procedure which allows the user to change an alarm limit without
the standard alarm editor. This advanced function is used in cases where
alarm limits are set from within VBA rather than from the standard alarms
worksheet.

 exSetAlarmDelay(…)

This is a procedure which allows the user to change the alarm delay
without the standard alarm editor. This advanced function is used in cases
where alarm delays are set from within VBA rather than from the standard
alarms worksheet.

 exAlarmSetModeByGroup(…)

This procedure which allows a user to programmatically disable or
suppress a group of alarms. It may be used for example when a
production line is switched off, to disable or suppress all related alarms.

 exAlarmSetModeByID(…)

This procedure which allows a user to programmatically disable or
suppress an specific alarm.

 exAlarmShowStatus(…)

This procedure creates a report containing all active alarms, all disabled
alarms, or all suppressed alarms, and sends the report to the system
event logger (and hence to the printer, if enabled).

eXLerate 2010 advanced topics reference
5-91

Chapter 5 - Alarm management - Alarm dead-band

Alarm dead-band

An alarm dead-band is used to suppress the generation of excessive alarms due
to the fact that the process value varies just at the alarm limit value, as in the
following example:

Figure 5-22: Alarm dead-band example used for a high limit alarm

The process value in the example above is the dark blue dotted line at the top

varying between ‘5’ and ‘10’; the alarm limit is the red line set at ‘8’, and a
dead-band value, the yellow line, of ‘1.5’ is defined (and hence drawn at 8-1.5,
or 6.5).

The thick light blue line above the bottom line represents the alarm state where
no dead-band (or a dead-band value of ‘0’) is applicable. As soon as the process
value exceeds the alarm limit, then the alarm state is raised, and as soon as the
process value drops below the limit value, the alarm state is reset. In the
example above, this introduces 10 alarm state changes.

The thick dark blue line at the bottom of the graph represents the alarm state

when a dead-band value of ‘1.5’ is applicable. As can be seen, the smaller
changes in the process value are ignored and thus the amount of alarm state
changes are only 4.

This is because with a dead-band value, the alarm state is reset when the
process value drops below (high limit – dead-band).

Alarm processing

0

2

4

6

8

10

12

0 5 10 15 20

High limit Deadb.Value Alarm State PV Deadband

The signal drops below the
limit value, but not below
the dead-band value (yet).

A normal alarm state
resets, but with a dead-
band it remains high.

5-92
 eXLerate 2010 advanced topics reference

Chapter 5 - Alarm management - Other alarm options

For a low alarm, or a low-low alarm this process works similarly, but reversed,
i.e. the alarm state is reset when the process value exceeds (low limit + dead-
band).

A dead-band is entered at the tag database in a column: “Deadband”, and is
entered in engineering units. When the column “Deadband” does not exist, the
dead-band mechanism is effectively disabled.

To (re-)enable the dead-band mechanism, insert the column in the tag
database, and fill-in a non-zero value at the appropriate tag. The dead-band
parameter value entered for a tag is used for all combinations, if any, of a high-

high alarm, a high alarm, low alarm, and low-low alarm.

Other alarm options

There are several additional options that can be configured using the VBA

callable procedure exAlarmSetOptions(…). See the function reference

manual for details regarding alarm options. Options include:

 AllowBlocking

Alarms may be configured with blocking enabled. When blocking is
enabled, no more alarm messages are generated when repeatedly alarms
change status from normal to alarm and vice versa without being
acknowledged. The amount of times that an alarm changes state before it
obtains a ‘blocked’ status is a user-defined parameter.

 AutoAcknowledge
Alarms may be configured for automatic acknowledgement. This causes
an alarm to automatically being acknowledged when occurring, e.g. the
user does not need to manually acknowledge an alarm when it occurs.

Note that when AutoAcknowledge is enabled, blocking has no effect.

eXLerate 2010 advanced topics reference
6-93

Chapter 6 - Trending - Introduction

Chapter 6 - Trending

Introduction

In eXLerate, the transition between real-time trending and historical trending is
smooth: a real-time trend in eXLerate is a special case of an historical trend: it

is simply an historical trend with the current time on the right-hand side of the
time-axis.

Internally in eXLerate, the data recording mechanism is totally separate from
the display of trends. Data recording/collection always continues, even when
there are no trend displays defined at all in an application. Data recording /
collection is defined in the tag database.

Enabling Trending

Trending can be enabled on a per tag basis. This is discussed in Tag database of

the Application Reference Manual. After the ‘TrendNorm’ property has been
specified the Tag & Object Wizard should be run to enable trending for the
configured tags.

Additionally, for each application shortcut in the Control Center, the ‘Trending
Path’ must be specified.

Trending Parameters

There are several parameters for trending, which are maintained at system level
at the Control Center:

The most important is the ‘Retain trends for’ parameter. This setting controls the

lifetime of the historical trend data. To prevent your hard-disk from filling up
with trend-data after months or years, it is wise to set some kind of limit (e.g.
60 days = 2 months), depending on the size of the disk.

6-94
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - Visualizing Trend Data

Visualizing Trend Data

Trend-data can be visualized using a set of 3 trend-controls. These controls may

be inserted into your application using the ‘Controls’ option in the ‘Insert’ section
of the eXLerate ribbon:

Figure 6-1: Insert Trend Controls

Three Trend controls can be distinguished:

Control Description

exTrendChart Visualizes the trend-data in a chart. Contains controls for zooming in and
out of the trend-data and moving forward and backward in time.

exTrendPenSelector Allows the user to select and modify the tags to visualize for trending.
This control works in conjunction with the ‘exTrendChart’ control, in that
it selects the tags to visualize in the trend-chart.

exTrendNavigator This control visualizes a larger portion of the trend-data in order to
quickly see anomalies in the data. This control also works in conjunction
with the ‘exTrendChart’ control, in that it allows you to quickly select the
time-period for the trend-chart.

Table 6-1: Trend Controls

To start using the Trend Controls, insert a “Trend Chart” onto a worksheet or
VBA Form and give it a proper name. After this, insert a “Trend Pen Selector”
and attach its ‘Target’ to the previously inserted trend-chart.

These controls are discussed in detail furtheron in this chapter.

eXLerate 2010 advanced topics reference
6-95

Chapter 6 - Trending - exTrendChart Control

exTrendChart Control

This is the main control which visualizes the trend-data in the form of a chart.

The control is similar in appearance to a Chart as can be found in Microsoft
Excel.

Figure 6-2: exTrendChart Control

Chart Area

The Chart Area encapsulates the whole control excluding the toolbar. In the

example above the Chart Area has a background picture and no border.

Plot Area

The Plot Area is the region in which the drawing of the trend-lines is performed.
The region that is not occupied by the plot-area is used by the axes. The
following properties are available for the plot-area:

Figure 6-3: Plot Area properties

6-96
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendChart Control

By default the plot-area is oriented horizontally which creates horizontal time-
axes and vertical value-axes. When oriented vertically, the time-axes become
vertical and the value-axes become horizontal.

The margins define the available space for the axes. These can be changed in
the “Margins” tab or by clicking on an axis and dragging the edge:

Figure 6-4: Plot area margins

Navigation

Navigating can be done using the options in the toolbar:

The toolbar is fully configurable and buttons may be removed when desired.

Button Icon Description

Start-date Shows the start-date/time of the chart. When clicked a popup is shown
which allows for selecting a specific date/time.

End-date Shows the end-date/time of the chart. When clicked a popup is shown
which allows for selecting a specific date/time.

Period Shows the difference between the start- and the end of the chart. When
clicked a list is shown with predefined periods.

Move to Begin

Moves the start of the chart to the first time a value was stored for any of
the pens.

Fast Backward

Moves the chart backward fast. By default the fast step-size is set to 100%
which causes the chart to move backward a whole page.

Backward

Moves the chart backward. By default the step-size is set to 25% which
causes the chart to move backward by a quarter of a page.

Forward

Moves the chart forward. By default the step-size is set to 25% which
causes the chart to move forward by a quarter of a page.

Start- date.

Period.

Forward / backward. End- date.

Zoom in / out.

Mouse
navigation
mode.

eXLerate 2010 advanced topics reference
6-97

Chapter 6 - Trending - exTrendChart Control

Button Icon Description

Fast Forward

Moves the chart forward fast. By default the fast step-size is set to 100%
which causes the chart to move forward a whole page.

Move to End

Moves the end of the chart to the current date/time.

Realtime

Enables or disables realtime-mode. When enabled the end-date remains
fixed on the current date/time. Also the data-cursor remains fixed on the
current date/time. When any of the other buttons is pressed, realtime-mode
is automatically disabled allowing the user to perform historical viewing.

Zoom In

Zooms in on the current cursor position.

Zoom Out

Zooms out. When this button is pressed the value axis-zoom is always reset
to 0%-100%.

Moving Mode

Enables mouse-moving mode. When enabled, a hand-cursor appears when
moving the mouse over the chart plot-area. When the plot-area is clicked a
closed hand appears after which the plot-area may be dragged in any
direction.

Zooming Mode

Enabled mouse-zooming mode. When enabled, a cross appears when
moving the mouse over the chart plot-area. When the plot-area is clicked a
rectangle may be dragged until the mouse button is released. The chart will
then zoom onto the selected zoom area.

Table 6-2: Trend Chart Toolbar

The following properties are available for navigation:

Figure 6-5: Navigation properties

The Properties dialog also contains an option “Zoom Selection”. This setting
defines the visual appearance when using the mouse zooming-mode to select a
zoom-area.

The step size
defines the scroll-
speed when
pressing the
Forward or
Backward button.

The fast step size
defines the scroll-
speed when
pressing the Fast
Forward or Fast
Backward button.

6-98
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendChart Control

Data Cursor

The Data Cursor is a tool for accurately viewing pen-values on a specific
date/time. The Data Cursor can be put on a specific date/time by moving the
mouse over it. When a sizing cursor appears the mouse button can be pressed
and the cursor may be moved:

Figure 6-6: Data Cursor

The following properties are available for the Data Cursor. The Background and
Border tabs define the visual appearance of the cursor:

Figure 6-7: Data Cursor Properties

Optionally, the date/time may be displayed on the top- or bottom-axis:

Figure 6-8: Data Cursor Date/Time

eXLerate 2010 advanced topics reference
6-99

Chapter 6 - Trending - exTrendChart Control

Pen Labels

By default the value of each pen is shown as a label on the chart itself. This label

may also be disabled after which the value will only be visible in the PenSelector
Control. When enabled, the label can be configured to display additional
properties of the tag such as Units & Description:

Figure 6-9: Pen Label Properties

By default, the background of the label is displayed in the same color as the
pen, this can also be changed so that a fixed color is used instead:

Figure 6-10: Pen Label Color

Time Axes

Two time axes may be configured. Both the Top & Bottom Axis share certain

properties that are accessible through the “Time Axes” properties tab:

Disable the
“Use Pen color”
option in order
to use a fixed
background /
border color.

6-100
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendChart Control

Figure 6-11: Time Axes properties

The grid-counts determine how many tickmarks and labels are shown on the
axis. The specified number of grid counts is used as a maximum, eXLerate will

draw as many tickmarks and labels as properly fit on the chart.

By default the time flows from the left to the right. By enabling the ‘Reverse
order’ option this can be changed so that it flows from the right to the left.

Value Axes

Two value axes may be configured. Both the Left & Right Axis share certain
properties which are accessible through the “Value Axes” properties tab:

Figure 6-12: Value Axes properties

The grid-counts determine how many tickmarks and labels are shown on the
axis. The specified number of grid counts is used as a maximum, eXLerate will
draw as many tickmarks and labels as properly fit on the chart.

By default the minimum is displayed on the bottom and the maximum on the
top. By enabling the ‘Reverse order’ option this can be changed so that the
minimum is displayed on the top and the maximum at the bottom.

Enable options to
always show labels
for the start-
and/or end- date.

By default the
minimum and
maximum is offset
0.1 inch from the
top and bottom.

eXLerate 2010 advanced topics reference
6-101

Chapter 6 - Trending - exTrendChart Control

Scaling

eXLerate contains an auto-scaling option which determines the upper- and lower

scaling boundaries based on the visible trend-values, and optionally the limits. It
is also possible to use a fixed value or a so-called dynamic value. When for
instance, the dynamic value “Tag minimum” is used, the “Min” property as
configured in the xTagDB is used.

Figure 6-13: Scaling properties

Custom scaling

Trend-pens may also be scaled manually from VBA. In this case the
‘MaximumScaleType’ property of the TrendPen should be set to ‘

exTrendValueAxisScaleTypeFixed’, and the ‘MaximumValue’ should be set to the
desired scaling-value. The Minimum can be scaled in the same manner:

…

exTrendChart.Pens.Item(1).MaximumScaleType = _

 exTrendValueAxisScaleTypeFixed

exTrendChart.Pens.Item(1).MaximumFixedValue = 100

…

6-102
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendChart Control

Value Axis Styles

Each of the value axis (left & right) may be configured as either Percentage or

Engineering Units:

Figure 6-14: Value Axis Styles

When percentage is selected the axis displayed as 0%-100% and each pen is
individually scaled. This means that the minimum of each tag is scaled to 0%
and the maximum is scaled to 100%:

Figure 6-15: Percentage Axis

When Engineering Units is selected the actual trend values are displayed and the

all pens are scaled globally. The maximum and minimum of all pens is
determined and the highest maximum is used as the top edge and the lowest
minimum is used for the bottom edge. In the sample below the same trend
values are used as in the Percentage example above.

eXLerate 2010 advanced topics reference
6-103

Chapter 6 - Trending - exTrendChart Control

Figure 6-16: Engineering Units Axis

Besides showing either Percentage or Engineering Units, it is also possible to
display both. When one axis is Percentage and the other is Engineering Units,
each pen is scaled individually and the minimum and maximum of each pen is

scaled to 0% - 100%. The Engineering Units Axis can display the values for only
one pen:

Figure 6-17: Using both Percentage and Engineering Units Axis

In the example above, the right axis (Engineering Units) has been configured to
use the pen-color rather than a fixed color. Which pen is displayed on the

Engineering Units axis can be selected in the PenSelector control:

Figure 6-18: Showing Engineering Units Axis for specific pen

The ‘Axis’ options in the PenSelector are only enabled when the Chart is
configured with two different axis.

6-104
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendChart Control

Pen Defaults

The defaults for adding new pens to the TrendChart can be configured in the
properties dialog:

Figure 6-19: Default Pen Style

After adding a new pen, the plot-style, line-style and color can be changed by
the operator.

Markers

Optionally markers can be drawn at the actual data points in the chart. Initially
when a pen is added no marker is shown. The PenSelector control can be used
to select a marker for the pen(s). The background and border of the markers
can be configured in the properties dialog.

Figure 6-20: Markers on the Chart

Figure 6-21: Selecting Markers using the PenSelector

eXLerate 2010 advanced topics reference
6-105

Chapter 6 - Trending - exTrendChart Control

Limits

When a tag has any alarm limits configured, it is possible to display these limits
on the chart:

Figure 6-22: Alarm Limits on Chart

The PenSelector control supports a ‘Limits’ option which shows the limits when
selected. When the tag is not configured with any limits, the option is

automatically disabled.

Figure 6-23: Limits option in PenSelector

By default the ‘Limits’ column is hidden. To show this option open the properties

dialog of the PenSelector and enable the appropriate column:

Figure 6-24: Add Limits Column to PenSelector

6-106
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendPenSelector Control

exTrendPenSelector Control

The PenSelector control combines both the chart legend and the pen selecting
mechanism in a single control.

Figure 6-25: exTrendPenSelector Control

The PenSelector control consists of 3 parts, which can be enabled independently.
These 3 parts have been combined in a single control in order to support
resizing of the individual panes:

Figure 6-26: PenSelector individual panes

Tags Pane

Height resizer

Pen Sets Pane

W
id

th
 re

s
iz

e
r

Pens Pane

eXLerate 2010 advanced topics reference
6-107

Chapter 6 - Trending - exTrendPenSelector Control

Linking to a Chart control

The first thing that has to be done after inserting a PenSelector control is to
attach it to a TrendChart control. After opening the properties dialog a list is
shown with all the existing TrendChart controls. One of these controls should be
selected as the target control:

Figure 6-27: Selecting a Target Chart

When multiple TrendChart Controls have the same name, they should be
renamed to unique names. To rename a Trend Control, enable design-mode and
use the Name-box to specify a different name:

Figure 6-28: Editing names

Tags

The tags-pane shows a list of all tags configured for trending. The alias of the

tag is shown in the list if available, otherwise the tag-name is displayed:

Figure 6-29: Tag selection

The following properties are available for the tags pane:

Filter area which
supports wildcards
‘*’ and ‘?’.

Tag-alias if
available otherwise
tag-name. When
double-cliked
toggles the
selection.

Option to unselect
all selected tags.

The icon is
highlighted when
the tag is shown in
the chart. When
the icon is clicked
the selection is
toggled.

6-108
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendPenSelector Control

Figure 6-30: Tags Properties

When the Tags-option is unchecked, the whole tags-pane becomes hidden.

Pen Sets

The Pen Sets pane shows a list of previously saved pen-sets. A pen-set is a
collection of pens and their settings.

Figure 6-31: Pen sets

The following properties are available for the pen-sets pane:

Figure 6-32: Pen Sets Properties

In order to prevent any user from modifying and deleting pen-sets, the minimal
security level for modifying pen-sets can be configured.

Pen sets can be configured in Run-Time mode, so operators can defined their
own pen sets. Pen sets can also be pre-configured and then transferred as a file

to the target computer.

Double-click on a
pen-set to load it.

Deletes the
selected pen-set.

Saves the
currently selected
pens to a pen-set.

Header may be
used to resize the
height.

eXLerate 2010 advanced topics reference
6-109

Chapter 6 - Trending - exTrendPenSelector Control

The following picture shows the PenSets folder when viewed from the Windows
Explorer:

Figure 6-33: Pen-set files

Pens

The pens-pane shows all currently selected pens and additional properties. A
toolbar is provided for modifying the pen properties.

Figure 6-34: Pens Toolbar and List

The pens-pane can be shown or hidden using the properties dialog:

Figure 6-35: Pens Properties

Toolbar

Pens list

6-110
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendPenSelector Control

Pens Toolbar

The following options are supported by the pens toolbar:

Button Icon Description

Remove

Removes the currently selected pens from the chart.

Color

Selects a different color for the selected pens.

Line

Selects a different line style and weight for the selected pens.

Marker

Selects a marker for the selected pens.

Style

Select the plot-style for the selected pens.

Chart Style Selects the automatic pen-grouping mode for the chart.

Group

Groups the selected pens together in the same plot-area.

Ungroup

Ungroups the selected pens and creates the separate plot-areas for each
pen.

Move Up

Moves the selected pens one position up in the list.

Move Down

Moves the selected pens one position down in the list.

Table 6-3: Pens Toolbar

Pens List

The pens list shows all the pens of the chart and additional properties. The

properties are shown as columns of the list. Which columns are visible and the
width of the columns can be configured in the properties dialog:

Table 6-4: Pens List Columns

Click the option
to show or hide
the column.

Up and down
buttons can be
used to sort the
columns.

The width can
be changed
when a column
is selected.

eXLerate 2010 advanced topics reference
6-111

Chapter 6 - Trending - exTrendNavigator Control

exTrendNavigator Control

The TrendNavigator is an optional control for data inspection and navigation. It

shows the same pens as the TrendChart control but for a greater period. The
position of the Chart is displayed inside the Navigator and can be moved and
resized.

Figure 6-36: exTrendNavigator Control

To a large extent, The TrendNavigator has the same graphical capabilities as the
TrendChart control. Because of this reason, these will not be discussed explicitly.

This chapter is focused on the unique features of the Navigator only.

Before the TrendNavigator can be used it has to be linked to a TrendChart
control. See Linking to a Chart control on page 6-107 on how to do this.

Selection Area

The TrendNavigator shows a transparent rectangle which represents the linked
TrendChart control. The background and border of this rectangle can be changed
in the properties dialog:

6-112
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - exTrendNavigator Control

Figure 6-37: Selection Area Properties

Optionally it is possible to view the cursor of the TrendChart. This cursor is not

interactive; it merely shows the current position of the cursor within the
TrendChart:

Figure 6-38: Selection Area

Selection area
border which can be
resized when auto-
zoom is disabled.

Chart cursor.

Selection area
background which
can be moved using
the hand-cursor.

eXLerate 2010 advanced topics reference
6-113

Chapter 6 - Trending - exTrendNavigator Control

Automatic zooming

The control supports two modes of operation, automatic zooming enabled and
automatic zooming disabled. The option can be changed in the properties dialog:

Figure 6-39: Auto Zoom Properties

When automatic-zooming is enabled, the period of the TrendNavigator is linked
to that of the TrendChart. Assume that the TrendChart has a period of 1 day and
that the Auto Zoom option is set to a factor of 10. This will cause the
TrendNavigator to show 10 days of data. When either of the controls is zoomed,

the period of the TrendNavigator will always be a factor X of the TrendChart.

When automatic zooming is disabled, the period of the TrendNavigator can be
changed without affecting the linked TrendChart. This mode also makes it
possible to move the left- and right edges of the chart selection rect:

Figure 6-40: Moving the left- and right edges

Moving the right

edge changes the
Chart end-date.

Moving the left
edge changes the
Chart start-date.

6-114
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - Accessing trend-data directly

Accessing trend-data directly

Besides using the TrendChart control to visualize the trend-data it is also
possible to programmatically access the trend-data. The following VBA functions
are available for accessing raw trend-data:

Function Description

exTrendReadTag(…) Reads the trend-data for a specific tag over a specific period. The result
is returned as an 2 dimensional array which can be directly written to a
worksheet.

exTrendReadFile(…) Reads all the trend-data from a specific trend-file.The result is returned
as an 2 dimensional array which can be directly written to a worksheet.

exTrendWriteTagToCSV(…) Writes the trend-data for a spefic tag and period to a CSV-file.

Table 6-5: Trend Data Functions

These functions are documented in the “Function Reference Manual”.

eXLerate 2010 advanced topics reference
6-115

Chapter 6 - Trending - Data storage

Data storage

Trend data is stored on disk in folders and binary files. Each tag that is
configured for trending a separate folder is created in the “TrendData” folder
(e.g. “C:\XLRX\TrendData”):

Each tag-folder contains 3 or more sub-folders. The sub-folders “Raw”, “10Days”

and “100Days” are used for storing the actual trend-values. Other sub-folders
are optional and are used for storing additional data such as limits. These folders
are automatically created by eXLerate when necessary. Within these folders,
files are created with the extension .xtd (eXLerate Trend Data File):

The name of the file identifies the start-date of the file based on UTC (=GMT 0)
and has the following layout: Y<year>_M<month>_D<day>_UTC<summer-
correction>.xtd. The year, month and day fields speak for themselves. The
summer-correction field is used when eXLerate is configured for daylight-saving
corrections.

Reading Trend Files

Trend-data files (.xtd) may be read (from eXLerate) using the
‘exTrendReadFile(..)’ function in VBA. See the “Function Reference Manual” for a
description of this function.

6-116
 eXLerate 2010 advanced topics reference

Chapter 6 - Trending - Data storage

This page is intentionally left blank.

eXLerate 2010 advanced topics reference
7-117

Chapter 7 - Relational Databases - Introduction

Chapter 7 - Relational Databases
In this chapter, you will learn how to use the embedded relational database in
your application, and how to access external relational databases from your
application.

MySQL has been selected as the embedded database engine for use in an

eXLerate environment, because of its programming power, excellent
performance, great support as well as its beneficial economic aspects.

A powerful and yet simple spreadsheet interface is available in eXLerate to
define all your real-time SQL statements directly from a worksheet. Together
with the extensive support for VBA, these tools give you the power to build any
kind of database application.

Another great feature of the embedded database is redundancy support.
Databases are automatically synchronized between multiple servers and it
requires no engineering effort whatsoever.

Programming in the SQL language isn’t a nightmare anymore, it’s fun!

Introduction

A database is a structured collection of data. It may be anything from a simple
shopping list to a picture gallery or the vast amounts of information in a

corporate network.

A relational database stores data in separate tables rather than putting all the
data in one big storeroom. This adds speed and flexibility, and fits nicely in the
natural spreadsheet concept of rows (records) and columns (fields).

7-118
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - The embedded database

The embedded database

eXLerate uses MySQL 4.1 as its embedded database engine. Configuration is

very easy; just specify the database path in the application shortcut of the
Control Center and you’re ready to go:

Figure 7-1: Embedded Database Path

The embedded database will be created automatically if it doesn’t already exist.

Table layout

Initially the database consists of only 2 tables. The ‘events’ and the

‘command_log’ tables. The ‘command_log’ table is used internally by eXLerate
to keep multiple databases synchronized, which is discussed later on in this
document.

The ‘events’ table is used to store the alarms & events history. It has the
following layout:

Column Data Type Description

 ID BIGINT Unique ID of the event.

DATETIME DATETIME Date and time the event was stored.

CLASS VARCHAR(32) Event class (e.g. ‘Alarms’, ‘Security’, ‘Parameter’)

TYPE VARCHAR(32) Event type (e.g. ‘Ack’, ‘Logoff’, ‘Change’)

LOCATION VARCHAR(64) Location (e.g. ‘FC01_PRESPRVIN_LOFAULT’, ‘MSC-A’)

USER VARCHAR(64) Name of the user or ‘System’

MESSAGE VARCHAR(255) Event message

EXTRA1 VARCHAR(128) Additional event field 1

EXTRA2 VARCHAR(128) Additional event field 2

Table 7-1: Embedded database Event table

The primary-key is defined for column ‘ID’, which means that the table will
never have multiple records with the same ‘ID’. Furthermore, an index is defined
on column ‘DATETIME’. This index ensures the fast operation of queries when
sorting records by date-time.

eXLerate 2010 advanced topics reference
7-119

Chapter 7 - Relational Databases - The embedded database

Database Identifiers

Every database in eXLerate is identified by a unique database ID. The embedded
MySQL database can be accessed through the unique database ID ‘0’. The ‘0’
database is however a special case. It is designed to ease the development of
client/server systems, thus it has a different meaning in different scenarios.

The following scenarios can be distinguished:

 Stand-alone. When the ‘0’ database is used on a stand-alone server, it
identifies the local embedded database.

 Duty server. Same as the stand-alone server, ‘0’ identifies the local
embedded database.

 Standby server. The ‘0’ database identifies the embedded database on the
duty server.

 Client. Same as the standby-server, ‘0’ identifies the embedded database
on the duty server.

There is 1 more database ID available. It should normally not be used, but is
provided in the interest of a complete reference list:

Database ID Description

0 See scenarios described above.

Local_embedded Always accesses the database on the local computer.

Table 7-2: Embedded database ID’s

All other database identifiers automatically refer to external databases
configured using the worksheet function ‘exConfigureDatabase(…)’ or the

worksheet ‘xExtDB’.

User definable tables

eXLerate can be extended with user definable tables. MySQL stores tables in the
form of files. This makes it very easy to copy tables from one database to

another. A single table consists of the following 3 files:

File-name Description

<table>.FRM MySQL Table & Column definitions File

<table>.MYD MySQL MyISAM Data File

<table>.MYI MySQL MyISAM Index File

Table 7-3: MySQL table files

7-120
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - The embedded database

These tables can be created using MySQL 4.1, which can be downloaded freely
at http://www.mysql.com. MySQL stores these files in its default data folder
(e.g. “C:\Program Files\MySQL Server 4.1\Data\<database>\”) unless specified

otherwise.

When copying table files from one database to another, make sure that both
databases are stopped. In case of the embedded eXLerate database, make sure
the application is completely shutdown. When copying to or from an external
MySQL 4.1 database, make sure the MySQL-service is completely stopped.

During startup of eXLerate, the Event Logger will show an event for every user-
defined table that has been found.

On redundant systems, user-definable tables are automatically synchronized

between the servers. Upon startup each server should contain the same user-
defined tables with the same layout. After synchronization, the data in the tables
on all servers will be identical.

Driver specific info values

The embedded database contains a set of driver specific value which can be

obtained using the worksheet function ‘exSQLLastDriverSpecificInfo(…)’ and the
VB function ‘SQLCmd.GetDriverSpecificInfo(…)’. The following info values are
supported by the embedded database:

Info value Description

mysql_error MySQL specific error-code.

mysql_time Time in seconds it took MySQL to execute the SQL statement.

thread ID of the thread that executed the SQL statement.

affected_rows Number of rows that have been affected. For instance, when executing
an INSERT or UPDATE statement, this info-value can be used to
determine how many rows have been affected (e.g. changed by the
UPDATE-statement).

Table 7-4: Embedded database driver specific info values

Redundancy & Synchronization

When multiple servers are used, the database is automatically synchronized
between these servers. Synchronization is very important in order to achieve a

solid redundancy implementation.

http://www.mysql.com/

eXLerate 2010 advanced topics reference
7-121

Chapter 7 - Relational Databases - The embedded database

Two types of synchronization can be distinguished:

 Initial synchronization. Upon startup a server determines whether it is the
duty server or not. If not, it will copy the complete database from the duty

server over its own database and show the ‘Synchronization’ window.
After this, both databases will be identical.

 Run-time synchronization. After the database has been completely
synchronized, it is constantly kept up-to-date. This is done using a very
fast and secure mechanism.

Because the standby server(s) always have an up-to-date database, failure of
the duty server will not cause any data-loss. At this point the standby server
would become duty and start using its own database. Any connected clients will
automatically switch to the database on the new duty server. Clients do not

need to and cannot configure an embedded database. Instead, they use the
database on the duty server.

Advanced settings

By default, the embedded database is configured for use in both large and small
systems. In most scenarios the default settings should provide optimal
performance. These defaults can however be changed in order to fine-tune the
application.

Changing these settings can be done using the ‘exSetDatabaseProperty(…)’

worksheet function. The following properties are supported by the embedded
database:

Property Default Description

concurrent_

connections

5 Maximum number of connections that should be used
when accessing the embedded database. Increasing
this value may improve the ability to process more
SQL statements in parallel.

Table 7-5: Embedded database driver properties

Example:

=exSetDatabaseProperty(“local_embedded”,

 “concurrent_connections”, 10, xEvent1.Trigger)

7-122
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - The embedded database

Corruption & data loss

In certain situations it is possible that database corruption occurs. The most
common reason is a sudden power failure. In that case the MySQL database will
not be able to flush all the date to disk and close the tables. Another common
reason, is manually copying table-files while the database is still running.

When eXLerate starts it will automatically try to repair any corrupted database
tables. This may cause some loss of data, depending on when the last flush was
executed. These events are logged to the Event Logger upon startup. If for
some reason, the database corruption could not be repaired, please contact your
eXLerate representative.

When using a single server, data loss can never be completely prevented in case

of a system failure. To increase reliability, the use of multiple servers is advised.
Using 2 servers is commonly considered a good redundant solution and will
ensure proper system operation in case of single point of failure.

Troubleshooting

The embedded MySQL database writes any critical errors and warnings to a log
file located in the database root folder. The log-file has the following file-name:
<computer name>.err (e.g. “NB01.err”). The file can be opened in any ASCII-
viewer such as notepad. Make sure the eXLerate application is completely

shutdown before opening the file, otherwise an error message is shown that the
file cannot be accessed.

eXLerate 2010 advanced topics reference
7-123

Chapter 7 - Relational Databases - External databases

External databases

Configuration

This chapter does not cover the setup and configuration of 3rd party database

platforms. Instead, it describes the tools supported by eXLerate in order to
interface with these 3rd party databases.

External databases can be configured using two worksheet functions:
‘exConfigureDatabase(…)’ and ‘exSetDatabaseProperty(…)’.

The easiest way of configuring an external database, is to use the ‘xExtDB’

worksheet. This worksheet provides a template for configuring external
databases and can be found in the ‘MyDatabase’ sample application.

Figure 7-2: External Database Table

All databases in eXLerate can be accessed through Database ID’s. When
configuring an external database, a unique ID has to be chosen for the
database. These ID’s must range from 1..n.

The database type specifies the driver which will be used to communicate with
the external database. In the example above, the ‘mysql’ driver is used to

communicate with a MySQL 4.1 database.

All other properties such as ‘Host’, ‘Database’, ‘User’, etc. are driver specific and
are explained in the specific driver sections further on in this document.

MySQL Database Driver

Introduction

MySQL is one of the leading database engines in existence. With the introduction
of MySQL 5.0 it also supports Triggers & Stored Procedures. eXLerate itself uses
MySQL internally as its embedded database engine.

MySQL is freely available and can be downloaded at the following URL:

http://www.mysql.com.

http://www.mysql.com/

7-124
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - External databases

Supported versions & platforms

The MySQL driver can be used to access external MySQL databases. It supports
the following versions of MySQL (other versions and platforms may also work

but have not been tested):

Version Platform

MySQL 4.1 Windows (x86)

MySQL 5.0 Windows (x86)

MySQL 5.1 Windows (x86)

MySQL 5.5 Windows (x86)

Table 7-6: Supported MySQL versions

Configuration properties

In order to configure an external MySQL database, the following set of

properties is supported. These can be configured by either using the ‘xExtDB’
worksheet or by using the ‘exSetDatabaseProperty(…)’ worksheet function
directly.

Property Default Description

host - Address of the computer where the MySQL server is located.
This can be either the computer-name or an IP-address.

User - Name of the user used to login into MySQL. (Please note
that MySQL supports a comprehensive security system,
which requires all computers that will be accessing the
MySQL server to be configured in MySQL.)

password - Password that is used to login into MySQL.

Port - Port that is used to communicate with MySQL. By default
when MySQL is installed it uses port 3306.

Database - Name of the database to access at the MySQL server.

Concurrent_

connections

5 Maximum number of connections that should be used when
accessing the MySQL database. Increasing this value may
improve the ability to process more SQL statements in
parallel.

Table 7-7: MySQL driver properties

eXLerate 2010 advanced topics reference
7-125

Chapter 7 - Relational Databases - External databases

Driver specific info values

The MySQL database contains a set of driver specific value which can be
obtained using the worksheet function ‘exSQLLastDriverSpecificInfo(…)’ and the

VB function ‘SQLCmd.GetDriverSpecificInfo(…)’. The following info values are
supported:

Info value Description

mysql_error MySQL specific error-code.

Mysql_time Time in seconds it took MySQL to execute the SQL statement.

Thread ID of the thread that executed the SQL statement.

Affected_rows Number of rows that have been affected. For instance, when executing
an INSERT or UPDATE statement, this info-value can be used to
determine how many rows have been affected (e.g. changed by the
UPDATE-statement).

Table 7-8: MySQL database driver specific info values

7-126
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - External databases

SQLServer Database Driver

Introduction

SQLServer is one of the leading database engines in existence. eXLerate uses
OLEDB to access the SQLServer.

Supported versions & platforms

The SQLServer driver can be used to access external SQLServer databases. It
supports the following versions of SQLServer (other versions and platforms may
also work but have not been tested):

Version Platform

SQLServer 2000 Windows (x86)

SQLServer 2005 Windows (x86)

SQLServer 2008 Windows (x86)

Table 7-9: Supported SQLServer versions

Configuration properties

In order to configure an external SQLServer database, the following set of
properties is supported. These can be configured by either using the ‘xExtDB’
worksheet or by using the ‘exSetDatabaseProperty(…)’ worksheet function
directly.

Property Default Description

host - Address of the computer where the SQLServer server is
located. This can be either the computer-name or an IP-
address.

user - Name of the user used to login into SQLServer. (Please note
that SQLServer supports a comprehensive security system,

which requires all computers that will be accessing the
SQLServer server to be configured in SQLServer.)

password - Password that is used to login into SQLServer.

database - Name of the database to access at the SQLServer.

concurrent_

connections

5 Maximum number of connections that should be used when
accessing the SQLServer database. Increasing this value may
improve the ability to process more SQL statements in
parallel.

Table 7-10: SQLServer driver properties

eXLerate 2010 advanced topics reference
7-127

Chapter 7 - Relational Databases - External databases

Driver specific info values

The SQLServer database contains a set of driver specific value which can be
obtained using the worksheet function ‘exSQLLastDriverSpecificInfo(…)’ and the

VB function ‘SQLCmd.GetDriverSpecificInfo(…)’. The following info values are
supported:

Info value Description

Oledb_error OLEDB specific error-code.

oledb_time Time in seconds it took the OLEDB driver to execute the SQL
statement.

thread ID of the thread that executed the SQL statement.

affected_rows Number of rows that have been affected. For instance, when executing
an INSERT or UPDATE statement, this info-value can be used to
determine how many rows have been affected (e.g. changed by the
UPDATE-statement).

Table 7-11: SQLServer database driver specific info values

7-128
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL worksheet functions

SQL worksheet functions

Introduction

The SQL interface in eXLerate can be fully configured from an Excel worksheet,
i.e. no VBA Sub routines are required to connect to a database or to retrieve

data from it. However, in some cases it makes more sense to access the
database using VBA, this is described in detail in the next section.

This section will cover the usage of the SQL worksheet function in order to read
and write from and to a database.

A worksheet is highly suitable for representation of a relational database, where

data is organized in records and fields. Using the worksheet functions, these
records and fields directly translate into rows and columns, respectively.

Queries

After a database has been configured, it can be accessed using so-called
‘Queries’. A ‘Query’ in eXLerate translates directly to a SQL statement executed
on a database.

The following worksheet functions are available for SQL Queries:

Function Description

exSQLCreateQuery(…) Create a query with a specific ID and options.

exSQLExecQuery(…) Execute the query, and return any result set of
the query to the worksheet in rows and
columns. This is the ‘workhorse’ function

actually executing SQL statements.

exSQLExecRangeQuery(…) Execute a query, which is based on a range of
values rather than a single value. Fields for a
single record have a user-definable name in
which an array index is used, e.g. VAL00,
VAL01, VAL02 to write a complete array in the

database using a single update function.

exSQLExecRecordQuery(…) Execute a query, which is based on a complete
database record rather than on a single value.
Each field in the record is named in an

argument.

exSQLField(…) Returns a single field of the result set of the
corresponding query.

exSQLRowCount(…) Returns the number of rows returned by the

corresponding query.

eXLerate 2010 advanced topics reference
7-129

Chapter 7 - Relational Databases - SQL worksheet functions

Function Description

exSQLColumnCount(…) Returns the number of columns returned by
the corresponding query.

exSQLLastError(…) Retrieve the last error of the corresponding

query, either as a number or a textual
description.

exSQLLastDurationTime(…) Return the time it took to execute to
corresponding query.

exSQLLastDriverSpecificInfo(…) Returns a driver specific value of the
corresponding last executed query. This
function can be used to obtain for instance,
the MySQL specific error-code if accessing a

MySQL database server.

exSQLDiagnosticalValue (…) Returns a diagnostical value of the
corresponding query. For instance, this
function can be used to determine how many
times a query has been executed. Such
information can be critical when optimizing an

application so that no unnecessary queries are
executed.

Table 7-12: Implemented SQL query functions

Views

A ‘View’ in eXLerate is a view-port on a previously executed SQL Query.

Consider the following metaphor. A book contains more than 1000 pages. When

reading it, it is only possible to view 2 pages at once. All the information of the

book is at your fingertips, but you can only access a small portion at any given
time.

Figure 7-3: SQL query & view relation

SQL Query

SQL View

SQL View
Row Offset

SQL View
Column
Offset

7-130
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL worksheet functions

SQL queries sometimes produce large result sets. Such queries can take a lot of
time, so minimizing the number of times they are executed can be very
important. Such a large result set will usually not fit entirely on the screen. In
that case a SQL View can be used to show only a section of the data. In order to

scroll through the data, a scrollbar can be used which modifies the offsets of the
SQL View. Scrollbars are explained in detail furtheron in this chapter.

The following worksheet functions are available for SQL Views:

Function Description

exSQLViewQuery(…) Views a selection of a previously executed SQL
query. The selection can be specified by using
row- and column-offsets.

Table 7-13: Implemented SQL view functions

SQL Table

The easiest way of configuring SQL queries, is to use the ‘SQL Table’. This table
is located on the ‘xSQL’ worksheet. This worksheet is located in the
‘MyDatabase’ sample application:

Figure 7-4: SQL Table

The ‘SQL Table’ consists of the following configurable ‘SQL Properties’:

Field Description

ID Unique ID of a query. When an entry in the SQL Table is
configured, a query with that particular ID is created. The
‘exSQLViewQuery(…)’ worksheet function can be used to
access the result of a SQL statement.

Database Database ID (0 = Embedded, 1..n = External). See
‘exSQLExecQuery(…)’ worksheet function for more details.

SQL Statement SQL Statement to execute (cannot exceed 255 characters).
See ‘exSQLExecQuery(…)’ worksheet function for more

details.

eXLerate 2010 advanced topics reference
7-131

Chapter 7 - Relational Databases - SQL worksheet functions

Field Description

Update Interval Interval in seconds the query will be executed. Set this
value to ‘0’ if the query should only be updated when the
SQL statement text itself changes.

Table 7-14: SQL Table property fields

When an SQL statement is executed, its status information is shown in the ‘SQL
Results’ part of the ‘SQL Table’:

Field Description

Error Code Returns the error code of the last executed SQL statement.
See ‘exSQLLastError(…)’ worksheet function.

Error Description Returns the error description of the last executed SQL
statement. See ‘exSQLLastError(…)’ worksheet function.

Row Count Returns the number of rows returned by the last executed
SQL statement. See ‘exSQLRowCount(…)’ worksheet

function.

Column Count Returns the number of columns returned by the last
executed SQL statement. See ‘exSQLColumnsCount(…)’
worksheet function.

Time Returns the time in seconds the last executed SQL
statement took to execute. See
‘exSQLLastDurationTime(…)’ worksheet function.

Execute Count Returns the number of times the SQL statement has
actually been executed. See ‘exSQLDiagnosticalValue(…)’
worksheet function.

Table 7-15: SQL Table result fields

After a SQL statement has been configured using the ‘SQL Table’ it can be
accessed using the ‘exSQLViewQuery(…)’ worksheet function. This function
returns the results of a query in the form of an array.

Figure 7-5: Example exSQLViewQuery(..) worksheet function

The first argument of the function identifies the query ID as configured in the
‘SQL Table’. The other arguments of the function are explained in detail in the

next section.

7-132
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL worksheet functions

Scrollable views

Views can be used in combination with scrollbars to create scrollable views. The
row- or column count of a query can be used to set the boundaries of a
scrollbar. The scrollbar can then be used to determine an offset for the view on
the query.

The worksheet ‘ScrollViews’ in the ‘MyDatabase’ project contains working
examples of scroll views.

Before configuring a scrollable view, the following condition must be met:

 The SQL query has been configured, either by using the ‘SQL Table’ or

directly by using the ‘exSQLCreateQuery(…)’ and ‘exSQLExecQuery(…)’
functions.

Step 1 : Create worksheet variables

A small set of worksheet variables needs to be created, most of which are self-
explanatory:

Figure 7-6: Creating worksheet variables for scrollable view

=exSQLRowCount(
<QueryID>,<Update Trigger>)

eXLerate 2010 advanced topics reference
7-133

Chapter 7 - Relational Databases - SQL worksheet functions

Step 2 : Create view array using exSQLViewQuery(…)

Select the range where the scollable text should appear:

Figure 7-7: Select scrollable range

And enter the following formula for the range:

=exSQLViewQuery(<Query ID>, <Update Trigger>,

 <Scollbar current position> + 1)

Because, the formula spans multiple cells, ‘Ctrl+Shift+Enter’ must be used to
accept the formula.

Example:

Figure 7-8: Scrollable range formula

Step 3 : Create a scrollbar next to the data

Insert a scrollbar next to the database and give it a logical name.

Figure 7-9: Creating a scrollbar

Place
scrollbar on
worksheet

Data
Select
scroll
bar

from
toolbar

7-134
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL worksheet functions

Step 4 : Attach scrollbar to current position variable

Right-click the scrollbar and select ‘Format Control…’.

Figure 7-10: Formatting the scrollbar

On the ‘Control’ tab attach the ‘Cell link’ to the ‘Scrollbar current position’ value.

Figure 7-11: Attach scrollbar to variable

eXLerate 2010 advanced topics reference
7-135

Chapter 7 - Relational Databases - SQL worksheet functions

Step 5 : Update the scrollbar boundaries

Queries can return result sets with changing row counts. This means that the
maximum value of a scrollbar needs to be updated whenever a query returns a

different row-count. Unfortunately, updating the boundaries of a scrollbar
(min/max) is not so straight-forward as updating the current position (see
above). The easiest way is to create an animation object and use the
‘exShapeMinMax(…)’ worksheet function to update the maximum value of the
scrollbar:

Figure 7-12: Update scrollbar maximum value

The minimum-value should remain ‘0’. The maximum value is calculated as
follows: <maximum value> = <query row count> - <scrollbar window size>.

Step 6 : Increase scrollbar response (Optional)

This step is optional and is not required in order to create a fully functional scroll
view.

When the slider on a scrollbar is changed, it may take a little while before the
view is actually updated. This is because the view is only updated when a re-

calculation is executed, which is normally done once every second. To improve
the view-response, the scrollbar has to call the following VBA macro whenever
its selection changes.

The following VBA macro should be assigned to the scrollbar:

…

Sub ManualRecalc

 exRecalc

End Sub

…

=exShapeID(
<Scrollbar name>,
xAutoRecalc)

=exShapeMinMax(<Shape ID>,
<Minimum>,<Maximum>)

7-136
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL VBA functions

SQL VBA functions

The ‘SQLCmd’ object

The ‘SQLCmd’ object is the main interface for VBA to access the database.

Unlike other objects such as ‘Trending’ and ‘Comms’, it has to be created
explicitly before it can be used. The following example shows several ways on
how to create a ‘SQLCmd’ object:

…

‘ Declare variable

Dim oSQL As SQLCmd

…

‘ Create instance of SQLCmd object

Set oSQL = New SQLCmd

…

It is also possible to combine the declaration and the creation into a single
statement:

…

‘ Declare variable and create it

Dim oSQL As New SQLCmd

…

When an SQL statement is executed either by using the function ‘Execute(…)’ or
‘ExecuteAsync(…)’, the results are stored inside the ‘SQLCmd’ object. These can
be accessed using the other properties and functions of the object. For instance,

in order to detect whether the SQL statement was executed successfully, the

properties ‘ErrorCode’ and ‘ErrorDescription’ can be used.

Executing SQL statements

This section describes the use of ‘synchronously’ executed SQL statements. A-
synchronously executed SQL statements are explained further on in this
document.

The function ‘Execute(…)’ executes a SQL statement on a database. The first
argument specifies the database ID (0=embedded database, 1..n=external

database). The second identifies the SQL statement to execute and the third
identifies the timeout-value in milliseconds.

eXLerate 2010 advanced topics reference
7-137

Chapter 7 - Relational Databases - SQL VBA functions

The following example executes a SQL statement on the embedded database
and waits for a maximum time of 10 seconds for it to complete:

…

‘ Declare variables

Dim oSQL As New SQLCmd

Dim lErr As Long

…

‘ Execute SQL statement

lErr = oSQL.Execute(“0”,“SELECT COUNT(ID) FROM EVENTS”,10000)

…

The return value (‘lErr’) will contain ‘0’ if the statement was successfully

executed. If an error has occurred, the properties ‘ErrorCode’ and

‘ErrorDescription’ can be used to determine the reason of the error.

Reading SQL results

After a SQL statement has been successfully executed, the results can be
accessed using the ‘Field’ property. The arguments for this property identify the
row- and column indexes within the result-set. Both are 0-based, so the first
element must be accessed using index ‘0’. The following example shows the use
of the ‘Field’, ‘RowCount’ and ‘ColumnCount’ properties:

…

‘ Declare variables

Dim lRow As Long

Dim lColumn As Long

Dim dSum As Double

…

‘ Iterate through all the fields and count the values

dSum = 0.0

For lRow = 0 To oSQL.RowCount - 1

For lColumn = 0 To oSQL.ColumnCount - 1

 dSum = dSum + oSQL.Field(lRow, lColumn)

 Next

Next

…

7-138
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL VBA functions

Writing SQL results to worksheets

When a ‘SQLCmd’ object contains any data, these results can be written to a
worksheet. The easiest way is to copy the ‘SQLCmd.Field’ property directly to a
worksheet cell:

…

oSheet.Range(“A1”).Value = oSQLCmd.Field(3, 4)

…

This works just fine for a couple of cells but can have a major performance
impact when writing large amounts of cells. In that case the ‘GetArray(…)’
function should be used instead. The ‘GetArray(…)’ function returns a 2-

dimensional array containing all the fields in the ‘SQLCmd’ object. This array can
be assigned to a worksheet range in a single function call, which makes it

extremely fast:

…

Dim vArray as Variant

…

‘ Copy all the fields into the array

vArray = oSQLCmd.GetArray()

…

‘ Copy the array to the range

oSheet.Range(“A1:C1000”).Value = vArray

…

eXLerate 2010 advanced topics reference
7-139

Chapter 7 - Relational Databases - SQL VBA functions

Executing a-synchronous SQL statements

Introduction

Executing SQL statements a-synchronously is a very powerful tool in order to
boost performance and increase responsiveness of your application. Especially
when executing multiple SQL statements, using the a-synchronous functions can
have a profound impact on the performance. The following example shows 5
SQL statements, executed synchronously:

Figure 7-13: Synchronously executed SQL statements

When the same SQL statements are executed a-synchronously the following
behavior arises:

Figure 7-14: A-synchronously executed SQL statements

SQL 1

SQL 2

SQL 3

SQL 5

SQL 4

30 ms

20 ms

45 ms

35 ms

30 ms

Total

160 ms

SQL 1

SQL 2

SQL 3

SQL 5

SQL 4

Total

45 ms

7-140
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL VBA functions

When executed a-synchronously the total time of execution will depend on the
slowest SQL statement in the batch.

The example above shows an ‘ideal’ situation. In such a situation all SQL

statements are executed in parallel without any performance cost. In reality, the
hardware (CPU, hard-drive, network) will have more to do at the same time,
which has some performance impact. Today’s generation of computers is
however increasingly capable of parallel execution (Hyper Threading, Multi-core
CPU’s) and thus using a-synchronous SQL statements will ensure that you get
the best performance out of your hardware.

Another important criterion for using a-synchronous SQL statements is
responsiveness. Imagine that a single SQL statement is executed which takes 30
seconds to complete. When executed synchronously, it will block the execution
of the application for that period. Using the a-synchronous functions will not

make it go faster, but when used correctly, will ensure that the application
doesn’t become blocked. It is also possible to cancel a-synchronous SQL
statements when necessary.

Executing multiple a-synchronous SQL statements

Executing multiple a-synchronous SQL statements can be done using both the
‘SQLCmd’ and ‘SQLCmdBatch’ objects.

The ‘MyDatabase’ sample application contains a working example on a-
synchronous SQL statements (Form ‘frmASyncSample’).

The following a-synchronous functions are available for the ‘SQLCmd’ object:

Name Description

ExecuteAsync Executes an SQL statement on a database and returns
immediately.

WaitForAsync Can be called after ‘ExecuteAsync’. Waits x milliseconds
for the a-synchronous operation to complete. If the a-
synchronous operation is completed before x milliseconds,
the function returns immediately. This function can be
called multiple times.

CancelAsync Cancels the last SQL statement executed by
‘ExecuteAsync’.

IsAsyncInProgress Returns ‘True’ when an a-synchronous operation is still in
progress.

Table 7-16: SQLCmd a-synchronous functions

eXLerate 2010 advanced topics reference
7-141

Chapter 7 - Relational Databases - SQL VBA functions

The following example demonstrates the use of the ‘SQLCmdBatch’ object in
combination with the a-synchronous functions of the ‘SQLCmd’ object:

…

‘ Declare variables

Dim oSQL1 As New SQLCmd

Dim oSQL2 As New SQLCmd

Dim oSQL3 As New SQLCmd

Dim oSQLBatch As New SQLCmdBatch

Dim lErr As Long

…

‘ Add SQL objects to the batch

oSQLBatch.Add oSQL1

oSQLBatch.Add oSQL2

oSQLBatch.Add oSQL3

…

‘ Execute SQL statements

oSQL1.ExecuteAsync “0”, “SELECT ID FROM EVENTS”

oSQL2.ExecuteAsync “0”, “SELECT MESSAGE FROM EVENTS”

oSQL3.ExecuteAsync “0”, “SELECT LOCATION FROM EVENTS”

…

‘ Wait for all statements to complete. Let Excel

‘ process any events every 100 milliseconds.

lErr = oSQLBatch.WaitForAsync(100)

While lErr <> 0

 DoEvents

 lErr = oSQLBatch.WaitForAsync(100)

Wend

…

‘ Check the error codes of the SQL command objects

If oSQL1.ErrorCode <> 0 Then …

If oSQL2.ErrorCode <> 0 Then …

If oSQL3.ErrorCode <> 0 Then …

…

The example shown above is one of many techniques which can be used for a-
synchronous SQL statements. It is also possible to use Timers or delays to
construct wait-loops.

7-142
 eXLerate 2010 advanced topics reference

Chapter 7 - Relational Databases - SQL VBA functions

This page is intentionally left blank.

eXLerate 2010 advanced topics reference
8-143

Chapter 8 - Client & Server - Introduction

Chapter 8 - Client & Server

In this chapter, you will learn how to add client/server support to your
application.

Using multiple servers is discussed in 0 Redundancy.

Introduction

Three types of computers can be identified: Duty (server), Standby (server) and
Client in an eXLerate environment. When using eXLerate to develop

client/server systems it is not necessary to create separate applications for
these different types of computers. Instead, a single application will serve all
these different functions.

From the application engineer point of view, a client application performs a lot of

functions the server also performs. For instance, it visualizes the data and allows
user interactions. But it doesn’t communicate directly with an IO device or
generate reports periodically. A client can therefore be considered a “subset” of
a server. All the functions it doesn’t perform are actually performed by the duty
server and the client just reads the results from the duty server. From the end-
user point of view, the duty- and standby server as well as each client computer
provide full operator functionality.

Most of this “conditional” behavior is done by eXLerate internally, such as
generating reports periodically. Application specific functionality should however
be implemented conditionally. For instance, when periodic reports are generated
manually, the VBA code in question should only be run on the duty server.

8-144
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Network Configuration Assistant (xNet)

Network Configuration Assistant (xNet)

All network related functionality in an application can be configured through a
set of worksheet functions. In order to simplify client/server implementation a
separate worksheet has been developed by our team which has all these
worksheet functions pre-configured. This worksheet is called ‘xNet’ and is
considered the primary means of configuring client/server functionality.

The ‘xNet’ worksheet is part of the ‘MyTemplate’ template application. When
creating a new application, this sheet is automatically copied into the new
application. If your application does not contain a ‘xNet’ sheet, you may
manually copy it from the ‘MyTemplate’ application to your own application.

The ‘xNet’ worksheet automatically detects the installed license:

Figure 8-1: xNet license detection

In order to use client/server functionality one of the following licenses should be
installed:

 Server license: The computer can be used as a server but also as a
client when needed.

 Client license: The computer can only be used as a client.

 Development license: The computer can be used either as a client or a

server. The development license is however restricted and does not
allow running communications for more than 1 hour at a time.

In case of a single computer no Client/Server functionality is required and the

stand-alone license shall be used instead.

eXLerate 2010 advanced topics reference
8-145

Chapter 8 - Client & Server - Server configuration

Server configuration

To configure a server you should execute the following steps. These steps apply
to both single server systems and multi-server systems with duty/standby
selection.

Step 1 : Configure ‘xNet’ worksheet

Specify the Computer Name of the server and optionally specify the IP-
addresses. The ‘xNet’ worksheet supports up to 2 servers:

Figure 8-2: Server configuration

The columns can be configured as follows:

Column Description

Computer

Name

Should contain the name of the computer which is server. Note

that, this is not the system-name as configured in the Control
Center, but the Computer-name as configured in Windows.

IP #1 Optional IP address by which the computer can be accessed. It
is highly recommended to specify an IP address explicitly.
Accessing computers on a network merely by using their

computer-name is not guaranteed to work. This is especially
true for systems that don’t use name-servers such as WINS or
DNS.

IP #2..4 Optional IP addresses of redundant network cards. A server will

always try to communicate over the primary connection unless it
fails, then it will try connection 2, 3 and eventually 4.

Startup
wait-time

Time in seconds the computer should wait at startup before
switching to a particular duty mode. If multiple servers are
specified, the duty wait times should be at least 10 seconds

apart. This is discussed in more detail further on in this
document.

Table 8-1: Server configurable fields

8-146
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Server configuration

Step 2 : Share Reports- data for clients

This step is required when clients will connect to the server. In this case a file-

share should be created for the Report folder:

Figure 8-3: Share Report folder on server

These are all the steps required for configuring a server. Whether the server IP

address configuration is correct can be validated using the ‘xNet’ worksheet.
Assume our server is called “SVC-A” and we are viewing the eXLerate
application on that server. For every IP address that is configured, the status
should be ‘Ok’, when the realtime updating has been started.

Figure 8-4: Server communication statuses

eXLerate 2010 advanced topics reference
8-147

Chapter 8 - Client & Server - Server configuration

If an invalid IP address was specified, “Not connected” will be shown, which
means that the server cannot start listening for incoming connections on that
particular IP address because the IP address is not assigned to any network

adapter.

8-148
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Client configuration

Client configuration

To configure a client you should execute the following steps:

Step 1 : Configure ‘xNet’ worksheet

Specify the Computer Name of the client and optionally specify the IP-
addresses. The ‘xNet’ worksheet supports up to 16 dedicated clients by default.

If necessary, the number of clients can be increased by adding rows to the
bottom of the table and copying the formulas to the new row(s).

Figure 8-5: Client configuration

The term ‘dedicated client’ was carefully chosen to distinguish between
dedicated and non-dedicated clients. A dedicated client is a client which has to
be explicitly configured in the application. A non-dedicated client does not have

to be configured, but can still connect to the servers and participate. A dedicated
client can however be monitored by others and a non-dedicated client cannot.
For instance, if an application contains an overview of all connected computers
(e.g. 2 servers and 2 clients), all clients on the overview have to be dedicated so
that the application can determine their status. A non-dedicated client can for
instance, be a service- or engineering laptop which is only used when necessary.
By putting the same application on the laptop, it can be used to access the

system, effectively becoming a non-dedicated client.

These clients are each identified by a unique ID which are resp. ‘1..16’. Please
note that client- and server ID’s are not exchangeable. This means that client

ID’s cannot be used for functions which require server ID’s such as
‘exQueryServer(…)’.

eXLerate 2010 advanced topics reference
8-149

Chapter 8 - Client & Server - Client configuration

The following columns are configurable:

Column Description

ComputerName Should contain the name of the computer which is client.
Note that, this is not the system-name as configured in the

Control Center, but the Computer-name as configured in
Windows.

IP #1 Optional IP address by which the computer can be accessed.
It is highly recommended to specify an IP address explicitly.
Accessing computers on a network merely by using their

computer-name is not guaranteed to work. This is especially
true for systems that don’t use name-servers such as WINS
or DNS.

IP #2..4 Optional IP addresses of redundant network cards. A client

will always try to communicate over the primary connection
unless it fails, then it will try connection 2, 3 and eventually
4.

Table 8-2: Client configurable fields

8-150
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Client configuration

Step 2 : Create network drive mappings to server(s)

Clients cannot have an embedded database. Instead they rely on the embedded
database on the duty server. The same is true for trend- and report files. Clients

do not generate these files; instead they read them from the duty server. This is
done by the use of a drive-mapping to the shared files on the server(s). For
each server to which the client should connect, a network drive-mapping needs
to be created. This has to be done for both the Reports- and Trending data:

Figure 8-6: Client network drive mapping

eXLerate 2010 advanced topics reference
8-151

Chapter 8 - Client & Server - Client configuration

Step 3 : Configure Control Center shortcut

The final step is to configure these network locations in the Control Center
shortcut:

Figure 8-7: Client shortcut configuration

If multiple servers are used, each server should have its own set of network
drive mappings. These drive-mappings can be separated using a ‘|’ character as
shown above. Any spaces that are used before or after the ‘|’ character are
ignored.

These are all the steps required for configuring a dedicated client. Whether the
client IP address configuration is correct can be validated using the ‘xNet’
worksheet. Assume our client is called “CLT-1” and we are viewing the eXLerate
application on that client. For every IP address that is configured, the status
should be Ok.

Figure 8-8: Client communication statuses

If an invalid IP address was specified, “Not connected” will be shown, which
means that the client cannot start listening for connections on that particular IP
address because the IP address is not assigned to any network adapter.

Server 1 ‘|’ character separates
the servers

Server 2

8-152
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Advanced settings

Advanced settings

The ‘xNet’ worksheet contains a separate section for advanced settings.

Figure 8-9: Advanced settings

The following advanced settings are supported:

Setting Default Description

Communication
Port

9666 TCP/IP port that is used for communicating with
other clients and servers.

Duty switchover
period

10 Time in seconds the system is forced in a duty
selection when switching over. Also, see section
‘Duty selection’ in 0 Redundancy.

Duty local

override

- When a value is entered, the computer is forced in

a fixed duty selection.

Time
synchronization
(hour)

- Hour of the day at which periodic time
synchronization between clients and server should
occur. If this cell is left empty, time

synchronization is performed every hour or not at
all, depending on the ‘Minute’ setting discussed

below.

Time
synchronization

(minute)

- Minute of the hour at which periodic time
synchronization between clients and server should

occur. If this cell is left empty, no time
synchronization is performed at all.

Table 8-3: Advanced settings

eXLerate 2010 advanced topics reference
8-153

Chapter 8 - Client & Server - Application development

Application development

Names

The ‘xNet’ worksheet provides an elaborate set of names which can be used for

application development. All the names provided by the ‘xNet’ worksheet are
read-only.

The following global names are available:

Name Data-
type

Description

Net.Started Boolean TCP/IP port that is used for

communicating with other

clients and servers.

Net.UpdateTrigger Date/time Recalculation trigger which
causes the ‘xNet’ worksheet to
be recalculated.

Net.Duty.ID Number ID of the currently selected duty
server, or ‘0’ if no duty is
selected.

Net.Duty.Name Text Computer name of the currently
selected duty server, or ‘None’ if
no duty is selected.

Net.Duty.SwitchOverride Number ID of the server which should

become the new duty server.
This value is written by the
‘exDutySwitch’ VBA function.

Net.Local.ServerID Number ID of the local server or ‘0’ if the

local computer is not a server.

Net.Local.ClientID Number ID of the local client or ‘0’ if the
local computer is not a client.

Net.Local.IsClient Boolean TRUE when the local computer
is a client.

Net.Local.IsDutyServer Boolean TRUE when the local computer
is the duty server.

Net.Local.WaitTimeExpired Boolean TRUE when the local computer
is still waiting before choosing a
duty server (always TRUE on a
client).

Table 8-4: xNet global names

8-154
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Application development

For each server and client the following set of names is available for application
development:

Name Data-
type

Description

Net.Server{1..2}.ComputerName Text Computer name of the server.

Net.Server{1..2}.Status Number Overal communication status of
the server. The following status
values are supported:

0: Ok

1: No heartbeat received

2: Not connected

3: Not started

4: Not configured

Net.Server{1..2}.Status{1..4} Number Communication status of a
specific redundant IP address
(network adapter). See status
description above.

Net.Server{1..2}.Duty Number ID of the duty server which is
selected by that particular
server, or ‘0’ if no duty is
selected by the server.

Net.Client{1..16}.ComputerName Text Computer name of the client.

Net.Client{1..16}.Status Number Overall communication status of
the client. The following status
values are supported:

0: Ok

1: No heartbeat received

2: Not connected

3: Not started

4: Not configured

Net.Client{1..16}.Status{1..4} Number Communication status of a

specific redundant IP address
(network adapter). See status
description above.

Net.Client{1..16}.Duty Number ID of the duty server which is

selected by that particular
client, or ‘0’ if no duty is
selected by the client.

Table 8-5: xNet Client / Server names

eXLerate 2010 advanced topics reference
8-155

Chapter 8 - Client & Server - Application development

Network overview

The following example shows a network overview of 2 servers and 2 clients.
Both the servers and the clients have 2 redundant network adapters, which are
represented by the green and red rectangles. Each rectangle represents the
communication status of a network adapter.

Figure 8-10: Network overview example

The names from the ‘xNet’ worksheet can be used to animate the network
adapters on the overview:

Figure 8-11: Network adaptor animation

Server 2

Animated using name:
“Net.Server2.Status2”

Animated using name:
“Net.Server2.Status1”

8-156
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Application development

Conditional development

When developing a client/server application it is important to keep in mind that
only the duty server should perform specific tasks, such as generating automatic
reports controlling valves, etc… Since the application runs on both the servers
and the clients, certain functionality should be prevented from running on
anything but the duty server.

It is important to know that all VBA code is executed on both the servers and
clients.

A set of tools is required for conditional development. These tools are provided
in the form of worksheet/Visual Basic functions and the names defined on the

‘xNet’ worksheet.

The following functions are supported for both worksheets and VBA:

Function Description

exIsClient Checks whether the local system is either a client or server.

exIsDutyServer Checks whether the local computer is the duty server or not.

Table 8-6: Conditional development tools

For worksheets it is recommended to not use the functions mentioned above but
to instead use the ‘Net.Local.IsClient’ and the ‘Net.Local.IsDutyServer’ names as
defined on the ‘xNet’ worksheet. The main reason for this is to improve the Excel
calculation performance by minimizing trigger based functions.

Worksheet function example:

Figure 8-12: Conditional worksheet function

Visual basic example:

' Check required position of the prover 4-way valves

' but do this only the duty server

If exIsDutyServer Then

 CheckPrvValves

End If

eXLerate 2010 advanced topics reference
8-157

Chapter 8 - Client & Server - Application development

Event logging

In client/server systems all events are logged to the central database. This
database is stored on the duty server and the standby server has a synchronized
copy of this database. Events are also locally logged in the Control Center. These
local logs are however not synchronized and differ on the individual computers.

The database should be considered the primary location for storing events, not
the local event log.

Many functions/mechanisms in eXLerate log events to the database. This is all
done transparently and does not require any additional engineering effort. There
are however some functions which have been tailored for client/server support.

The following functions behave in a particular manner when logging events:

Function Description

exLogChange
(Worksheet)

When this function is configured to log to the database, it
will only do this when executed on the duty server.

exStoreValue

(Worksheet)

When this function is configured to log to the database, it
will only do this when executed on the duty server.

exLogEvent

(Visual Basic)

When this function is used to log to the database, it will
always do this.

Table 8-7: Conditional event logging

Writing to IO devices

Writing to IO devices is possible from both clients and servers. Using the

functions ‘exUpdateEx(…)’, ‘exUpdateStrEx(…)’ and ‘exUpdateVarEx(…)’ it is
possible to write a value to an IO device. When these functions are used on a
worksheet they would be executed on all servers and clients. This would cause
each server and client to write the data to the specific IO device.

To restrict the writing to the duty server the following statement can be used for
worksheet writes:

Stand-alone usage:

=exUpdateEx(iQuery, iItem, dValue, UpdateMode)

Client/server usage; only write on duty server:

=IF(Net.Local.IsDutyServer, exUpdateEx(iQuery, iItem, dValue, UpdateMode),
FALSE)

8-158
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Application development

Synchronized parameters

The ‘exStoreValue(…)’ worksheet function serves a dual role in client/server
systems. Not only is it responsible for retentive storage of parameters to the
local registry, it also synchronizes parameters between clients and servers.

Parameters are initialized on startup with the value last stored in the registry of
the duty server:

 Server 1 Client 1

A new parameter value is entered on “Server 1”:

The parameter value on all other servers/clients is automatically updated.

Figure 8-13: Synchronized parameters

Parameters can be modified on both clients and servers, after which the
changed parameter is distributed to all other clients and servers.

When using the ‘exStoreValue(…)’ worksheet function in client/server systems it

is essential that the ‘Trigger’ argument contains the value ‘xAutoRecalc’. If this
is not the case, it is possible that the parameter is not correctly initialized and
thus no synchronization will happen.

Shared values

Shared values are synchronized values which are shared by all clients and
servers in a system. They can be read/written conditionally from worksheets and

Visual Basic. When compared to synchronized parameters, they have the
following different characteristics:

 Synchronized parameters are always written; Shared values are only
written when the write-condition is ‘True’, otherwise they are read.

 Synchronized parameters are retentive; Shared values are not retentive.

Much like a synchronized parameters, a shared value is also identified by a

unique name (e.g. “MySharedValue”). No functions are required to register the

unique shared value name. Instead, the name is implicitly registered by the
shared value functions.

exStoreValue(
MyParam,

 “MyParam”,
 xRegKey & "\AutoLoad",
 ,,,,
 xAutoRecalc)

eXLerate 2010 advanced topics reference
8-159

Chapter 8 - Client & Server - Application development

The following example shows the use of shared values on worksheets. Assume
that cell ‘L30’ contains a calculated value, which is different on all computers.
The ‘exShareValue(…)’ worksheet function can be used to write that specific
value on a specific system after which it can be read on all others.

Figure 8-14: Shared value worksheet function

The second-argument, which is the ‘write-condition’, compares the current

computer with a specific computer-name. This will only evaluate to ‘True’ on
computer ‘SVC-1’. The return-value of the function is the shared value. On ‘SVC-
1’, this will be always the same as value as cell ‘L30’, on all other computers this

will be the ‘L30’ cell as written by ‘SVC-1’.

The following example illustrates this mechanism using ‘Net.Local.IsDutyServer’
as the write-condition:

Figure 8-15: Shared value on multiple computers

Shared values can also be used from VBA. The following Visual Basic functions

are supported for reading and writing shared values: ‘exGetSharedValue(…)’ and
‘exUpdateSharedValue(…)’. The following example illustrates the use of these
functions:

' Write shared value on duty server and read on others

If Net.exIsDutyServer Then

 Net.exUpdateSharedValue “MySharedValue1”, strValue

Else

 Net.exGetSharedValue “MySharedValue1”, strValue

End If

exShareValue(
“MySharedValue”,
Net.Local.IsDutyServer,
L30,
xNow.Time)

SVC-1 SVC-2

8-160
 eXLerate 2010 advanced topics reference

Chapter 8 - Client & Server - Application development

This page is intentionally left blank.

eXLerate 2010 advanced topics reference
9-161

Chapter 9 - Redundancy - Introduction

Chapter 9 - Redundancy

In this chapter, you will learn how to add redundancy support to your
application.

Introduction

eXLerate has an extensive support for redundancy. This allows you to build fail
safe systems. Since “A chain is only as strong as its weakest link”, all supported
levels of redundancy can be extended with multiple backups. For instance, if 2

network cards don’t provide enough redundancy, additional network cards can
be added in a breeze.

In a typical system, four hardware levels are subject to redundancy:

 Device redundancy

In case a device fails (e.g. flow computer, PLC); a
backup device may take its role. Although eXLerate
cannot play an active role in this scenario, it will have to
interface with these devices. These devices will have a
communication channel to the eXLerate server so all data
is available. eXLerate can be configured to choose the
data of a preferred device or it can calculate its own

values based on the data received by multiple devices.
Data of such devices may be stored in a single tag in the
database using multiple columns.

 Device communication channel redundancy

Some devices support redundant communication channels.
This makes the device less vulnerable to broken cables,

electrical problems, etc… eXLerate can be configured to
take full advantage of this device feature. The application
engineer is in full control over the flow of data. Whether the
redundant communication channel is only used in the event
of a failure, or used for continuous communication, it’s all
possible. If the communication protocol supports it, the
data-flow can also be divided over multiple communication

channels to increase overall bandwidth (e.g. load-balancing).

9-162
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Introduction

 Server redundancy

To protect against a server failure, one or more backup servers may be
configured. All servers in an eXLerate environment are identical. A

duty/standby concept is used to distinguish between the servers. Only one
server is the “duty” server, the others are considered “standby”. If the
“duty” server fails, a standby server will take on the roll of “duty” server.
The standby server(s) continuously synchronize all the
data from the duty-server such as reports, averages,
database, etc… These synchronized servers allow for
bumpless switchovers without any hiccups.

Additionally, standby servers can also be used as IO
servers. If the “duty” server has a communication
problem with a device, it can be configured to use the
IO channel of a standby server, which is called IO

routing. This is all possible without having to switch to
another “duty” server.

 Network redundancy

Clients and servers may be equipped with multiple
network cards in order to communicate over a single
or multiple networks. The configuration involves
merely specifying the IP address of the network card.
The rest is handled transparently by eXLerate.

eXLerate 2010 advanced topics reference
9-163

Chapter 9 - Redundancy - Device redundancy

Device redundancy

Introduction

In case a device fails (e.g. flow computer, PLC), a backup device may take its
role. Although eXLerate cannot play an active role in this scenario, it will have to

interface with these devices. These devices will have a communication channel
to the eXLerate server so all data is available. eXLerate can be configured to
choose the data of a preferred device or it can calculate its own values based on
the data received by multiple devices.

9-164
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Device redundancy

Configuration

Please refer to Reference Manual I, Chapter 6 – Data Communications on how to
configure communications.

When configuring multiple redundant devices, each device has its own set of
protocols and queries. In the tag database, there is however only a single row
per redundant IO point:

Figure 9-1: Tag Database with redundant IO

The ‘Value’ column represents the in-use data point. ‘Value2’ and ‘Value3’
represent the actual data received by two redundant devices. Additional devices
can simply be added by adding new columns to the Tag Database.

The ‘Query Table’ also needs to be modified so that the tags are written to the

proper column in the Tag Database:

Figure 9-2: Query Tables write to multiple columns in Tag DB

First redundant device
writes to column 8

(Value2) in xTagDB

Second redundant device
writes to column 9
(Value3) in xTagDB

eXLerate 2010 advanced topics reference
9-165

Chapter 9 - Redundancy - Device redundancy

The in use IO point (Value) can be determined using a formula. The application
engineer is left free in his/her choice of this formula. For instance, a device may
report whether it is the master- or slave device. In that case the following
formula may be used:

“Calc.FC01.Master” contains the ‘master’ status of the device. If the first device
is master; the first column is used, otherwise the second column is used.

If desired, it is also possible to calculate the average value of both devices:

This would however not work if one device failed. In that case the average
should only be calculated if both devices are valid. In all other cases, the valid

device should be used:

9-166
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Device communication channel redundancy

Device communication channel redundancy

Introduction

Some devices support redundant communication channels. This makes the
device less vulnerable to broken cables, electrical problems, etc… eXLerate can

be configured to take full advantage of this device feature. The application
engineer is in full control over the flow of data.

Two typical scenarios can be distinguished which are discussed in the following
sections.

Multiple active communication channels

In this setup, all communication channels of a device may be configured as
separate protocols. This will cause all data to be transported over all redundant

communication channels. eXLerate can be configured to select from one of the
incoming sets of data. This setup puts however more strain on the server and IO
device because it effectively doubles the number of IO communication points.

This setup is very straightforward because each communication channel is
configured as a separate device.

Please refer to “Device redundancy” on how to configure this type of
redundancy.

eXLerate 2010 advanced topics reference
9-167

Chapter 9 - Redundancy - Device communication channel redundancy

Single active communication channel

This setup uses only one active communication channel per device. The
redundant communication channels are used only when the active
communication fails. This setup puts much less strain on the system and device
while providing the same level of redundancy as “Multiple active communication
channels”.

For each communication channels (e.g. COM port) a separate protocol needs to
be configured:

Figure 9-3: Primary and secondary protocols

The primary protocol should have all the communication queries configured. The
secondary protocol should only contain a ‘validation’ query which is necessary
for checking the availability of the line:

Figure 9-4: Primary and secondary protocol queryes

The final and most complicated step is to configure the device switching
mechanism. This mechanism should behave in the following manner:

Whenever the primary protocol looses its connection, it should check the status

of the secondary protocol. If the status is OK, the primary protocol should switch

to the device in use by the secondary protocol (e.g. COM12). Alternatively, the

9-168
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Device communication channel redundancy

secondary protocol should switch to the device previously in use by the primary
protocol, so it can monitor the status of that device.

Basically, the protocols exchange devices in such a fashion that the primary

protocol always uses the first valid device. In the following example, assume
that the primary protocol is using device COM11 and the secondary protocol is
using COM12. COM11 is part of Port Server 1, and COM12 is part of Port Server
2. If Port Server 1 fails, COM11 will also fail:

Figure 9-5: Primary protocol device failure

The primary and secondary protocols should now swap their devices:

Figure 9-6: Swapping protocol devices

Since the protocol table is static, swapping the devices cannot be done by
writing a new value into the device column. Instead, two worksheet functions
are available for this purpose. The ‘exSetAlternateDevice(…)’ worksheet function

can be used to add ‘alternate’ devices to a protocol:

Figure 9-7: Alternate protocol device

Secondly, the ‘exSelectDevice(…)’ worksheet function can be used to switch a
protocol to either its primary device, which is configured ‘Device’ column of the
protocol table, or to an alternate device:

Figure 9-8: Protocol device selection

Primary protocol stops receiving/sending data.
Secondary protocol still receives/sends data.

Protocol ID

Alternate device

Alternate device index

Cell containing device index to select:
0 = no device (disabled)
1 = primary device
2..n = alternate device

Protocol ID

eXLerate 2010 advanced topics reference
9-169

Chapter 9 - Redundancy - Device communication channel redundancy

The end result would be the following protocol table with 3 additional columns
on the end:

Figure 9-9: Protocol table with device selection

When looked at in detail, the new columns contain the following worksheet

functions:

Figure 9-10: Device selection columns

The device index needs to be written from VBA. It is impossible to do this using
worksheet functions because it will always result in a circular reference. The
resulting VBA code needs to be periodically executed. A good place to do this is
the ‘OnEvent(…)’ event handler defined in the ‘modEvents’ module:

Public Sub OnEvent(iEventID As Integer, strPeriodName As String,

iPeriod As Long)

 Select Case iEventID

 ' 5 seconds timer

 Case 3:

 'Check redundant communication lines

 CheckComPorts

 End Select

Exit Sub

Figure 9-11: Protocol device selection periodic handler

=exSetAlternateDevice(
1,
2,
"COM12:19200,n,8,1",

xNow.Time)

Device index, written
by VBA.

=exSelectDevice(
1,
AE4,
xAutoRecalc)

9-170
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Device communication channel redundancy

The determination of the selected device index is best explained using the
following Visual Basic code:

Sub CheckComPorts

 ‘ Local data

 Dim iCurrentPrimaryDevIndex As Integer

 Dim iNewPrimaryDevIndex As Integer

 ‘ Read currently selected device index from worksheet

 iCurrentPrimaryDevIndex = Range(“xComms!AI4”).Value

 iNewPrimaryDevIndex = iCurrentPrimaryDevIndex

 ‘ Check primary protocol status

 If Range(“xProtocol.1.Status”).Value = 0 Then

 ‘ Status ok, no need for switching

 Else

 ‘ Status not ok, determine whether to switch or not

 ‘ Only switch if secondary status is Ok

 If Range(“xProtocol.2.Status”).Value = 0 Then

 ‘ Swap devices

 If iCurrentPrimaryDevIndex = 1 Then

 iNewPrimaryDevIndex = 2

 Else

 iNewPrimaryDevIndex = 1

 End If

 End If

 End If

 ‘ Write new device index to worksheet

 If iCurrentPrimaryDevIndex <> iNewPrimaryDevIndex Then

 ‘ Switch primary protocol to other device

 Range(“xComms!AI4”).Value = iNewPrimaryDevIndex

 ‘ Switch secondary protocol to other device

 Range(“xComms!AI5”).Value = iNewPrimaryDevIndex

 End If

End Sub

Figure 9-12: Protocol device selection code

eXLerate 2010 advanced topics reference
9-171

Chapter 9 - Redundancy - Server redundancy

Server redundancy

Introduction

eXLerate supports fully synchronized servers. This means that standby servers

continuously update themselves with the data stored/calculated on the duty
server. This also means that standby servers do not: generate reports, calculate
totals/averages, etc… Instead, they copy the data from the duty server when it
becomes available. This allows eXLerate to perform “bump less” transitions
when switching from one duty server to another.

In a nutshell, an eXLerate standby server is always identical to the duty-server.
When the duty server fails, the standby server can immediately take over and
ensure data consistency since it was identical to the duty server. When the failed

server comes back online, it will synchronize itself with the duty server and take
its role as a standby server. The big advantage of fully synchronized servers is
data integrity. If for instance, two servers would calculate a time-weighted
average, it would be nearly impossible for them to come up with exactly the

same result. Both values would be correct, but they would still be marginally
different. If in such a case a duty switch would occur; all calculated data would
be overwritten by the results of the new duty server, which is undesirable.

No additional configuration is required for multiple servers as opposed to a
single server. The application can however be developed in such a way that it
performs specific tasks only on the duty server (or a standby server if

desirable).

9-172
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Server redundancy

Duty selection

The duty selection consists of a set of priorities on the ‘xNet’ worksheet:

Figure 9-13: Duty selection

The selection is done in a “first served” fashion. If a server detects that another
server is already duty, it will respect the other server and will not become duty
itself. If no server is duty, the server who’s “Startup wait-time” expires first, will
automatically become duty. It is therefore essential that the “Startup wait-time”
of the servers is at least 10 seconds apart. Assume there is a power-drop and all
servers are shutdown. When the power comes back online all the servers are
turned on at the same time. To prevent multiple servers from becoming duty

(even though it is just for a short time) at the same time, the “Startup wait-
time” has to be at least 10 seconds apart.

Local duty status

Each server (and client) has its own local duty status which is communicated to
all other servers and clients in the system. Therefore, each server and client
knows the local duty status of all the others. The local duty status of a particular
server can be viewed in the server section of the ‘xNet’ worksheet:

Figure 9-14: Local Duty status

This local duty status is used to determine whether a different server is already

the duty server. In that case the other servers respect the duty status and won’t
become duty themselves.

eXLerate 2010 advanced topics reference
9-173

Chapter 9 - Redundancy - Server redundancy

Manual duty switching

It is also possible to manually switch to another duty server using the
‘exDutySwitch(…)’ VBA function which is part of the ‘wksNet’ module. This
function can be called from either a client or a server. It forces all servers into a
temporary duty status. By default, the time is 10 seconds but this can be
changed in the ‘Advanced’ section of the ‘xNet’ worksheet. This period is
required to ensure that all servers receive the new duty selection properly.
During this time, the server cannot automatically switch to another duty. After

the time has expired, the servers remain in the new duty selection.

Custom duty selection

Since the duty selection is part of a worksheet, it can be customized to the

fullest extend. The ‘xNet’ worksheet is provided as a tool to make life easier, but

it is not intended to force anyone to use it. Other duty selection strategies may
be considered. For instance, an external device may be used which determines
who will be duty.

9-174
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Server redundancy

IO routing

In client/server systems, eXLerate uses the IO on the duty server by default.
This means that all non-duty computers (clients & standby servers) read and
write IO through the duty server. If however, the duty looses communication
with a device, a duty switch would be required to restore communication. If this
newly selected server also has a communication problem, the system would be
crippled. If both servers have the same problem (e.g. No communication with a
particular modbus device), then there is no way to workaround this problem.

However, if the servers have different problems (Server 1 can’t communicate
with device 3; Server 2 can’t communicate with device 5) the system
availability is not necessarily in danger. eXLerate supports a mechanism which
can re-route IO communication from the duty server to any other server.

The following figure shows a scenario with 2 points of failures which are not

mutually exclusive:

Figure 9-15: IO Routing

By default all IO is handled by the duty server, but since the duty lost its
connection with FC1 (Failure 1), that IO is being re-routed through the standby
server. Failure 2 has no effect on the system availability because it exists only

on the standby server.

(Duty Server) (Standby Server)

(FC 1) (FC 2) (FC 3) (FC 4)

IO FC2, FC3 & FC4

IO FC1

(Failure 1) (Failure 2)

eXLerate 2010 advanced topics reference
9-175

Chapter 9 - Redundancy - Server redundancy

IO routing is possible at the query level as opposed to protocol level. In some
scenarios, multiple devices are attached to a single protocol. For instance, RS-
485 multi-drop systems support such architecture. Every communication query
is therefore re-routable.

Two worksheet functions are available for query routing. The function
‘exQueryStatus(…)’ can be used to monitor the status of a query on a particular
server. The function ‘exQueryServer(…)’ function can be used to re-route the
query to a particular server. When the function ‘exQueryServer(…)’ is omitted,
eXLerate assumes that the query should be routed through the duty server. This
is the default behavior and if no query routing is necessary, no additional

configuration work is required.

The following figure shows a Query Table with 4 additional columns which
implements the routing mechanism. An example of this is provided in the

‘MyNet’ sample application:

Figure 9-16: Query Table with routing support

The additional columns contain the following formulas:

Figure 9-17: Query Table routing columns

=exQueryServer(
<Query ID>,
<Server ID>,

<Trigger>)

=<routing formula>
 (see below)

=exQueryStatus(
<Query ID>,
<Server ID>,
<Trigger>)

9-176
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Server redundancy

The routing formula implements the actual routing behavior. The following
example shows a formula which uses the duty server as the primary route and
the standby server as the backup route. If no duty server is selected, it will
always use the local IO:

Figure 9-18: Query Table routing formula

In pseudo code the formula would look like this:

‘ If no duty server is selected

If(Net.Duty.ID = 0) Then

 ‘ Then always use the local IO

 result = 0

Else

 ‘ Is server 1 duty? and it is communicating OK?

 If(Net.Duty.ID = 1 And Query.Status.Server1 = 0)

 ‘ Yes it is, lets route the query through that server

 result = 1

 Else

 ‘ Is server 2 duty? and is it communicating OK?

 If(Net.Duty.ID = 2 And Query.Status.Server2 = 0)

 ‘ Yes it is, lets route the query through that server

 result = 2

 Else

 ‘ No valid query found, use local IO instead

 result = 0

 End If

 End If

End If

Figure 9-19: Query Table routing formula pseudo code

eXLerate 2010 advanced topics reference
9-177

Chapter 9 - Redundancy - Network redundancy

Network redundancy

Introduction

Clients and servers may be equipped with multiple network cards in order to
communicate over multiple networks. The configuration involves merely

specifying the IP address of the network card. The rest is handled transparently
by eXLerate.

Please refer to the previous chapter on how to configure a client or server with
multiple IP addresses.

Figure 9-20: Network redundancy

9-178
 eXLerate 2010 advanced topics reference

Chapter 9 - Redundancy - Network redundancy

Network considerations

When using multiple network cards there are some considerations to be made.
For instance, should both network cards be in the same IP range? Typically two
network architectures can be distinguished:

Redundant network cards on a single network

Figure 9-21: Redundant network cards on a single network

This setup provides redundancy in the form multiple network cards. If a network
card fails, the other network card can take over. However if the switch or router
fails, all communication fails as well.

In this setup, all network cards can be either in the same network range or in 2

separate ranges.

If the communication between the servers is completely lost, both servers will
become duty because they both think the other server has failed. This behavior
is inevitable and can only be prevented by using separate networks.

Redundant network cards on separate networks

Figure 9-22: Redundant network cards on separate networks

This setup provides redundancy in the form of multiple network cards and
routers/switches. If a network card of router/switch fails, the backup may be

used to resume communication.

In this setup, the redundant network cards need to be on separate IP ranges.
For instance, NCA-1 should use IP address 10.0.0.1 and NCB-1 should use
10.0.0.2. NCA-2 and NCB-2 should be in a non-conflicting IP range such as

(192.168.0.1 & 192.168.0.2).

NCA-1

NCA-2

NCB-1

NCB-2

eXLerate 2010 advanced topics reference
10-179

Chapter 10 - Multiple languages - Introduction

Chapter 10 - Multiple languages

In this chapter, you will learn how to add multi-lingual support to your
application.

Introduction

Microsoft Excel already supports multiple languages natively. eXLerate however
takes this support for multiple languages to the next level.

This chapter will describe how to implement multi-lingual support into
applications and how to setup Microsoft Windows for use with these multiple

languages.

eXLerate

10-180
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Setup Microsoft Windows to use multiple languages

Setup Microsoft Windows to use multiple languages

The first step in using multiple languages is to setup Microsoft Windows

correctly. Dependant on the installed version of Windows, additional languages
need to be installed.

It is not necessary to have a localized version of Windows installed (e.g.
German, Russian, etc…). Instead, any version (e.g. English) of Windows will do.
The localized versions of Windows additionally translate texts such as: Start-

Menu, Control Panel, Print dialogs, etc… into a specific language.

eXLerate does require that additional language packs are installed. These
language packs can be installed from the Regional and Language Option option
in the Control Panel.

Figure 10-1: Regional and language options

eXLerate 2010 advanced topics reference
10-181

Chapter 10 - Multiple languages - Setup Microsoft Windows to use multiple languages

When using East-Asian languages make sure that the Supplemental language
support is installed before installing the language packs:

Figure 10-2: Supplemental language support

10-182
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Setup Microsoft Windows to use multiple languages

The language packs can be installed from the ‘Advanced’ tab on the ‘Regional
and Language Options’ dialog:

Figure 10-3: Installing language packs

Choose the language that you want using the ‘Language for non-Unicode
programs’ option. In case of multiple foreign languages (e.g. Chinese and

Russian), the language with the code-page containing the characters for both
languages should be selected. For instance, the Russian code-page does not
include any Chinese characters, but the Chinese code-page does include
Russian characters. The code-pages supported by Windows can be found at the
Microsoft website (http://www.microsoft.com/globaldev/reference/WinCP.mspx).
These code-pages are divided into character sets (e.g. Latin, Cyrillic, Arabic,
etc…). Russian for instance, uses the Cyrillic character set. So when selecting

‘Russian’ or any other Cyrillic language, only the characters in that code-page

will be supported. The English characters are supported in all code-pages, so
whichever language is selected, English will always work.

eXLerate 2010 advanced topics reference
10-183

Chapter 10 - Multiple languages - Setup Microsoft Windows to use multiple languages

After having selected a different language, Windows may or may not prompt
with the following message. Select ‘Yes’ if the message is shown:

Figure 10-4: Skip file copying during language pack install

After a new language has been installed the computer needs to be restarted:

Figure 10-5: Restart computer after installing language pack

10-184
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Application support

Application support

eXLerate supports multiple languages through a worksheet called ‘xLanguage’.

This worksheet is a special case in that it does not contain any worksheet
functions. eXLerate recognizes the worksheet by its name, so it is therefore
essential that the worksheet is called ‘xLanguage’. The layout of this worksheet
is also fixed, but can nevertheless be extended with additional languages and
custom texts.

Figure 10-6: Multi -ingual worksheet ‘xLanguage’

Adding multi-lingual support

There are two ways to add multi-linguage support to an application. The easiest

way is to copy the ‘xLanguage’ worksheet from a sample application such as
‘MyTemplate’. It is also possible to let the Language Wizard generate a fresh
‘xLanguage’ worksheet:

Figure 10-7: Creating a new language

eXLerate 2010 advanced topics reference
10-185

Chapter 10 - Multiple languages - Application support

When ‘Run’ is pressed, the ‘xLanguage’ worksheet is automatically created:

Figure 10-8: Language Wizard ourput

The newly created worksheet will however have no default formatting, so this
will have to be applied manually:

Figure 10-9: Language worksheet without formatting

Language worksheet layout

The layout of the ‘xLanguage’ worksheet is as follows:

Figure 10-10: Language worksheet layout

The first three columns are fixed. Each column that follows and has a non-empty
value in row 1 is considered an additional language. The country flags () are

merely informational and have no functional purpose. The first two rows are also
fixed.

Class

Language Key Default text

(English)

Additional

languages…

Header

Class

Multi
Lingual

texts

10-186
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Application support

Generally speaking, each language consists of its own column in the language
worksheet. A row on the other hand can be either a class row:

Or a language row:

A class rows starts with a text in the first column identifying the class to which
the succeeding language rows belong. The language worksheet always starts
with the ‘System’ class and succeeding language rows.

Language keys usually consist of several words separated by ‘\’ characters (e.g.
“Alarms\Dialogs\Suppress\NoValidRow”). This syntax is not obligatory but it is
recommended because it improves readability and extensibility. All the keys in
the ‘System’ class are fixed and cannot be changed.

Some language texts support dynamic keywords which are replaced by specific

values when the text is displayed. For instance, the language key
“Alarms\Dialogs\Suppress\SuppressGroup” supports the keyword ‘%GROUP%’,
which when displayed is replaced by the actual name of the alarm group.

Adding languages

Languages can be easily added to the application by creating a new column in
the language worksheet and giving it the name of the language:

Figure 10-11: Adding languages

After that, the actual language texts need to be specified. In case a text is not
filled in, the text from the “Default” column will be used.

eXLerate is outfitted with a set of default languages which can be easily copied

into the language worksheet. If your desired language is not included, please
contact your eXLerate supplier. These languages are placed in the
‘Languages.xls’ file which is stored in the application directory (e.g.
C:\XLR\Languages.xls’). The following steps show how to copy a language into
your application. These steps assume that your eXLerate application is open and

in design mode:

eXLerate 2010 advanced topics reference
10-187

Chapter 10 - Multiple languages - Application support

Open the ‘Languages.xls’ file:

Figure 10-12: Opening the ‘Language.xls’ file

Select the worksheet containing the desired language:

Figure 10-13: Select desired language

Select the column containing the language and copy it to the clipboard:

Figure 10-14: Select language column

10-188
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Application support

Go back to the original application and select the ‘xLanguage’ worksheet:

Figure 10-15: Select ‘xLanguage’ worksheet

Select the first empty column:

Figure 10-16: Locate first empty column in language worksheet

Use ‘Paste’ to add the language to the worksheet. The end-result is a language
worksheet with the desired language:

Figure 10-17: Succesfully added language

After any modifications to the language worksheet, use “Apply Worksheet
Changes” before testing the new language:

Figure 10-18: Use ‘Apply Worksheet Changes’ after adding a language

eXLerate 2010 advanced topics reference
10-189

Chapter 10 - Multiple languages - Application support

Adding user defined texts

By default, the language worksheet contains only ‘System’ texts. These texts are
used for dialogs, log texts, notifications, etc… which are generated by eXLerate
rather than the application. It is also possible to extend the language worksheet
with user defined texts, which can be used in worksheets and VBA. User defined
texts must always start with a new class:

Figure 10-19: User defined texts in Language worksheet

eXLerate will interpret all user defined texts until two or more empty rows are
encountered:

Figure 10-20: User defined texts are terminated by two or more empty rows

Tip: After adding user defined texts, the ‘Sort’ option can be used to quickly sort
keys within a group:

Figure 10-21: Sorting user defined texts

After any modifications to the language worksheet, “Apply Worksheet Changes”
should be used before testing the modifications.

Two empty rows
causes eXLerate to
stop processing any
further user defined
texts.

10-190
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Application support

Multi-lingual Tag Database

The Tag Database supports multi-language texts for its tag descriptions and
alarm descriptions. These additional language texts can be added to the Tag
Database directly and don’t have to be configured through the ‘xLanguage’
worksheet. To add multi-lingual descriptions to the Tag Database, insert a
column into the Tag Database after the “Description” column:

Figure 10-22: Insert column into the Tag Database

Rename the column into “Description_<Language>”. The “<Language>” section
should be replaced by the name of the language (e.g. “Dutch”, “Russian”,
“Chinese”):

Figure 10-23: Rename column to proper language

If the currently selected language is “Russian”, the tag descriptions from the

column “Description_Russian” will be used for event logging and displaying. The
column “Description” is used if the selected language is not explicitly configured
or “Default” is selected.

The same mechanism applies to alarm descriptions. If alarm descriptions are
explicitly configured using the “AlarmDesc” column, the additional languages can

eXLerate 2010 advanced topics reference
10-191

Chapter 10 - Multiple languages - Application support

be added by adding new columns and appending the “_<Language>” postfix
(e.g. “AlarmDesc_Russian”, “AlarmDesc_Dutch”).

Multi-lingual Buttons

The Button Table does not use the ‘xLanguage’ worksheet for its button texts.
Instead, it uses the CHOOSE(…) function to select from multiple columns
containing language texts.

Figure 10-24: Multi-lingual Button Table

In the example above, columns I and J contain the texts for the English
(Default) and Dutch language. Column C uses the CHOOSE(…) function to select
from one of those languages:

Figure 10-25: Choosing a multi-lingual button text

The ‘xLangIndex’ -name contains the 1-based index of the currently selected
language. This index is automatically updated whenever a new language is
selected.

For this mechanism to work properly, the order of the language-columns in the

Button Table should be identical to the order of language columns in the
‘xLanguage’ worksheet. If this is not the case, the indexes will be different and
the wrong language text will be selected.

After a new language is selected, the actual texts on the buttons should be
updated. The ‘exSetButtonText(…)’ Visual Basic function can be used to update

the texts on all the buttons from the Button Table:

Sub SelectLanguage_Dutch()

 Range("xLangSelection").Value = "Dutch"

 exSetButtonText

End Sub

Figure 10-26: Selecting a new language

10-192
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Application support

Multi-lingual worksheets

Worksheets can be extended with multi-lingual support via the
‘exLanguageText(…)’ worksheet function. This worksheet function returns the
text associated with a Language Key in the currently selected language. If the
text is not available in the currently selected language, the default text is
returned. The ‘Legend’ worksheet of the ‘MyProject’ application contains working
examples of this feature.

Figure 10-27: ‘exLanguageText’ worksheet function

The following example shows the result of the ‘exLanguageText(…)’ worksheet
function:

 Default (English) Dutch

The function uses the trigger ‘xLangRecalc’ which causes the function to be re-
calculated every time a different language is selected.

In case of group- and text boxes an additional step is required. The text of a
control can be linked to a name or a cell by pressing ‘F2’ while the control is
selected:

Figure 10-28: Linking a control to a cell or name

Since it is not possible to enter the ‘exLanguageText(…)’ function directly into
the formula, an additional reference is required. An easy way is to use a cell on
a non-visible part of the worksheet and then refer to it from the control. This cell
should contain the ‘exLanguageText(…)’ function:

Figure 10-29: Language text referenced by a control

(Cell Z36)
=exLanguageText(

“Legend\Coriolis”,
xLangRecalc)

eXLerate 2010 advanced topics reference
10-193

Chapter 10 - Multiple languages - Application support

Multi lingual VBA code and forms

Forms and VBA code can be extended with multi-lingual support using the
‘exLanguageText(…)’ Visual Basic function. This worksheet function returns the
text associated with a Language Key in the currently selected language. If the
text is not available in the currently selected language, the default text is
returned. This function is identical in functionality to the worksheet function
‘exLanguageText(…)’ except that is does not have the trigger-argument.

The following example illustrates the use of the ‘exLanguageText(…)’ to show a
multi-lingual message box.

‘ Ask user to open the valve or not?

strPrompt = exLanguageText(“Messages\OpenValve”)

iRes = exMsgBox(strPrompt, vbYesNo, “eXLerate”)

Default (English) Dutch

Figure 10-30: Multi-lingual VBA code

When a form is activated, the texts on the form are dynamically filed in with the
currently selected language. The following example illustrates the use of

‘exLanguageText(…)’ to fill in the text upon form activation. The ‘frmReports’

user-form in the ‘MyProject’ application contains the following working example:

Private Sub UserForm_Activate()

 'Set multi-lingual texts

 Caption = exLanguageText("Dialogs\Reports\Caption")

 frmFrame.Caption = exLanguageText("Dialogs\Reports\Select")

 btnMonthly.Caption = _

 exLanguageText("Dialogs\Reports\PrintMonthlyReports")

 btnDaily.Caption = _

 exLanguageText("Dialogs\Reports\PrintDailyReports")

Figure 10-31: Multi-lingual user form

Language selection

10-194
 eXLerate 2010 advanced topics reference

Chapter 10 - Multiple languages - Application support

The currently selected language can be read/written using the ‘xLangSelection’
name. This name is part of the ‘xWizard’ worksheet. If the name is not available,
run the ‘Tag & Object Wizard’ to create the name. To display the currently
selected language on a worksheet, the following formula can be used:

Figure 10-32: Obtain currently selected language

To select a language, the name of the language needs to be written to the

‘xLangSelection’ name:

Sub SelectLanguage_Russian()

 Range("xLangSelection").Value = "Russian"

 exSetButtonText

End Sub

Figure 10-33: Selecting a new language

In order to make the selection possible from a worksheet, a button or picture

can be used:

Figure 10-34: Language selection buttons/pictures

This button or picture should be assigned to the language selection macro:

Figure 10-35: Assing language selection macro to picture

Picture object

eXLerate 2010 advanced topics reference
11-195

Chapter 11 - Terminal Services

Chapter 11 - Terminal Services

Introduction

Terminal Services, also known as “Remote Desktop Services”, offers the ability

to view and manage an eXLerate system remotely using one or more remote
desktop sessions (RDP). With Remote Desktop, the eXLerate program runs on
the Server, but is visible on a Client computer. This gives the benefit that you do
not need to install any software on your Client computer in order to view or
manage the eXLerate system.

The following overview gives an example of a terminal services setup:

Figure 11-1: Terminal Services Setup

Requirements

In order to use the eXLerate Terminal Services, the following software and
licenses are required.

Operating System

eXLerate Terminal Services Mode can be used with any supported version of
Microsoft Windows. The Desktop operating systems, Windows XP, Windows Vista
and Windows 7 however only support 1 simultaneous remote desktop connection

and are therefore not suited for running multiple remote desktop instances. In
order to do this you need Windows Server 2003 or Windows Server

2008(R2) with the Terminal Services Role enabled and the appropriate
licenses (TS CAL’s).

User A

User B

User C

RDP

Session

RDP

Session

RDP

Session

eXLerate Terminal
Services Server

11-196
 eXLerate 2010 advanced topics reference

Chapter 11 - Terminal Services

Microsoft Office

All supported Microsoft Office versions can be used in combination with Terminal
Services. The licensing is however different for these versions.

Office Editions & Licenses

Office 2003 You need to have a Retail or Enterprise edition of Microsoft
Office 2003.

Office 2007 In order to use Office 2007 in combination with Terminal

Services you need an Enterprise or Volume License key.
(http://support.microsoft.com/kb/828378)

Office 2010 In order to use Office 2010 in combination with Terminal
Services you need an Enterprise or Volume License key.

(http://support.microsoft.com/kb/828378)

Table 11-1: Required Microsoft Office licenses for Terminal Services

eXLerate License

In order to use eXLerate in combination with Terminal Services, a license option
is required. Please make sure you have purchased the ‘eXLerate Terminal
Services’ license-option prior to configuring Terminal Services with eXLerate.

Configuration

Using eXLerate in combination with Terminal Services requires configuration at
both the Operating System level and the eXLerate level.

Operating System

In order to setup Microsoft Windows to use Terminal Services, make sure the

following requirements are met. It is outside the scope of this document to
describe these steps in detail, please consult the Internet if you need
information about a particular topic.

Step

1 Install ‘Remote Desktop Services’ role on Windows Server.

2 Purchase and install ‘RDS CALs’ for the users or computers which are to

connect to the server.

3 Set the remote desktop services setting ‘Restrict each user to a single
session’ to ‘No’.

4 Create a Windows User called ‘eXLerate_Remote’ and give it ‘Administrator’
rights.

Table 11-2: Operating System Configuration

http://support.microsoft.com/kb/828378
http://support.microsoft.com/kb/828378

eXLerate 2010 advanced topics reference
11-197

Chapter 11 - Terminal Services

eXLerate

Now that Windows is configured correctly, setup the user ‘eXLerate_Remote’ so
that it automatically starts eXLerate and launches the appropriate application
(see eXLerate Reference Manual Volume I).

In the eXLerate Control Center, select the ‘Enable Terminal Services Mode’
option from the ‘Options’ dialog:

When this option is enabled, every eXLerate application that is started on the

system runs in ‘Terminal Services Client Mode’. Using this mode, a single
application shortcut may be started multiple times (one in each terminal services
session) on the same computer.

Terminal Services on a Duty/Standby/Standalone server
You may run a separate server for Terminal Services Clients, but you may also
combine a Duty/Standby server, or a Standalone system with Terminal Services
support. In this case you can use the ‘Run first login of the current user as a

regular eXLerate session’ option to ensure that your first launched session runs
as a regular eXLerate session (i.e. eXLerate Server Mode or eXLerate
Standalone Mode).

Client/Server support
In order to use Terminal Services, your application needs to contain client/server
support. In short this means that it requires a ‘xNet’ sheet and the server table
should contain the names and IP-addresses of the server(s) you which to
connect to. Please read Chapter 8 - Client & Server on how to add client/server

support to your application.

Using Terminal Services

After Terminal Services is correctly configured you can start using it. To
remotely access the eXLerate Terminal Services system, start the ‘Remote

Desktop Client’. You can find the remote desktop client by typing “remote
desktop” in the search-bar of the Windows 7 start-menu:

11-198
 eXLerate 2010 advanced topics reference

Chapter 11 - Terminal Services

Figure 11-2: Locating the Remote Desktop Client

After pressing ‘Enter’ the ‘Remote Desktop Connection’ window appears:

Figure 11-3: Remote Desktop Connection Window

After you click ‘Connect’ it will connect to the eXLerate Terminal Services
system. By default the size of the desktop will be adjusted to the screen

resolution of the client computer. The eXLerate application may however have
been developed for a specific resolution. To open a remote desktop connection
with a specific screen resolution you can use the following command-line:

mstsc /v:<IP-address/host> /w:<width> /h:<height>

Example:

mstsc /v:10.0.0.105 /w:1680 /h:1050

eXLerate 2010 advanced topics reference
12-199

Chapter 12 - Trouble shooting

Chapter 12 - Trouble shooting

Introduction

This chapter is meant for trouble shooting of not-so-trivial problems that an
application developer may run into.

Trivial problems in this context are issues like: ‘why doesn’t the animation of my
shape work ass I expected?’ or ‘Why is the outcome of my calculations not
correct?’ You will not find answers on such questions in this section, or any
section for that matter.

The types of problems you may run during application development into are
perhaps far more diverse and complex than can ever be solved for you in this

“cookbook” style chapter. Fortunately, you have an excellent development tool
with Excel to dig into such issues. If you need assistance in application
development/engineering you might consider obtaining external help.

Defensive programming is a good remedy against getting problems in the first

place. This manual is not a learning book for defensive programming, but the
instructions in this reference manual should help you out to solve the problems
discussed below.

There are problems known while working with Excel; try the internet and you
will find such issues, although Microsoft has solved all issues in the specified
Excel versions that are needed for eXLerate to operate correctly, reliably, and

stable.

If you have some doubt in working with Excel in an industrial environment, you
should be reassured because of the fact that today a myriad of applications
throughout the world are running in harsh industrial environments for 24 hours

per day, 365 days per year with only a minimum system administration or

maintenance requirements. Excel and other Office components are by its
millions of user a very well tested application suite!

If you might need further help, please contact your local distributor or Spirit IT
at (techsupport@spiritit.com).

mailto:techsupport@spiritit.com

12-200
 eXLerate 2010 advanced topics reference

Chapter 12 - Trouble shooting

Real-time data communications problems

One of the most challenging issues during application development are problems

encountered with real-time data communications.

Unfortunately it is not possible to predict what the solution would be in your
case. Please notice the following remarks about data-communication issues:

 You should preferably have Spirit IT confirm your communication

requirements prior to purchasing eXLerate to make sure that your
requirements can be properly dealt with.

 There is a low-level debugging tool built-in in eXLerate, the data-scope,
with which you are able to see data-messages back and forth. Utilize the
data-scope, and carefully examine messages and associated replies from

external devices.

 There are various communication samples available that are ready-to-run,
and may be of help for your situation. Please open the workbook samples,
and take a look if these samples indeed solve your problems.

 In many cases, the available parameters in the Protocol Table and Query
Table are not correctly setup for the job. Carefully examine the
requirements for your external devices, and check the corresponding
functionality in the example drivers of eXLerate and the documentation.

 If you still doubt the fact that the available communication drivers in
eXLerate are equipped for the job that you have in mind, you should
contact Spirit IT, or your local distributor directly to discuss your special
requirements.

 Spirit IT offers help to novice users in training courses, and in various
maintenance and support programs. If required, on-site technical support

is further possible. Check your price list for the available options.

eXLerate 2010 advanced topics reference
12-201

Chapter 12 - Trouble shooting

Worksheet functions are excessively called

In Excel, worksheets are recalculated as efficient as possible to optimize system

performance.

Due to the resulting behavior of these advanced recalculation optimizations and
associated strategy in Excel, parameters to VBA functions should be entered as
expressions rather than single parameters.

When parameters are directly passed without being expressions, the worksheet
functions may and will be called multiple times in a single recalculation cycle,
with null arguments rather than the actually supplied arguments.

In its simplest form, an expression constructed with argument iArgument is
‘iArgument+0’.

A simple expression for a string argument would be ‘strArgument & “”’ or
equivalent.

Such expressions are sufficient to avoid multiple ‘idle’ recalculations.

These expressions for arguments are applicable especially in user-defined VBA

functions, such as functions GetxxxIndex(…) in module modRange.

Example:

=MyFunction(A1,B2,C3, 2)

Figure 12-1: Example of a VB function causing excessive calling

Instead, the function should be called as follows:

=MyFunction(A1+0,B2+0,C3+0, 2)

Figure 12-2: Example of a correct VB function avoiding excessive calling

12-202
 eXLerate 2010 advanced topics reference

Chapter 12 - Trouble shooting

The application does not start up properly

When installing a new version of eXLerate, where your existing applications

should be running with, occasionally, existing applications do not start up
properly. This problem may occur due to a library version issue in Microsoft
Excel. All you have to do is to change the existing reference to the eXLerate
ActiveX DLL, in a quick procedure as described below.

The complete procedure is done in less then 10 seconds.

In most cases, Windows automatically recognizes the new library, in which case
your existing applications will run without any problems.

If this is not the case however, you will have started your application in the
Control Center, and after the startup command (Runtime or Design), nothing

happens. If this is the case, then follow the steps below:

Step 1
Minimize the main window of the control center.

Visual Basic for Applications is stopped at the first command it does not
recognize. You can quickly switch to the VBA environment using the F11 key.
Most likely this is in the Workbook_Open() built-in macro. VBA highlights both

the procedure and the offending statement.

Minimize the Control Center
when your application does
not start up properly.

eXLerate 2010 advanced topics reference
12-203

Chapter 12 - Trouble shooting

Step 2
Stop Visual Basic for Applications by clicking on the VBA toolbar ‘Reset’ button.

Step 3
Open the referenced modules in VBA, by opening the ‘References’ dialog from
the ‘Tools’ menu in Visual Basic, as below:

Reset VBA, by clicking on
the square button. The
yellow color will disappear
from ‘Workbook_Open()’.

12-204
 eXLerate 2010 advanced topics reference

Chapter 12 - Trouble shooting

Step 4
Remove the reference to the apparently unknown module: ‘eXLerate.DLL’, by
turning off the checkbox at the line: MISSING: eXLerate ActiveX DLL, as shown
below:

eXLerate 2010 advanced topics reference
12-205

Chapter 12 - Trouble shooting

Step 5
Close the dialog again. Then, re-open the References dialog again:

12-206
 eXLerate 2010 advanced topics reference

Chapter 12 - Trouble shooting

Step 6
Scroll down in the reference list and find the eXLerate ActiveX DLL:

Step 7
Enable the eXLerate ActiveX DLL by enabling the checkbox:

eXLerate 2010 advanced topics reference
12-207

Chapter 12 - Trouble shooting

Step 8
Close the dialog, and now execute manually the ‘Workbook_Open()’ macro in
VBA. Your application now will startup properly after all.

Step 9
Save your application when in design mode. Your problem should have been
solved. If the problem still persists, please contact your technical representative.

Run the ‘Workbook_Open()’ macro
manually. This causes eXLerate to start
up normally after all.

12-208
 eXLerate 2010 advanced topics reference

Chapter 12 - Trouble shooting

Contact address:

Spirit IT B.V.
Prof. Dr. Dorgelolaan 20, 5613 AM Eindhoven, The Netherlands
fax: +31 40 23 69 605
mailto: eXLerate@spiritIT.com

mailto:eXLerate@spiritIT.com

eXLerate 2010 advanced topics reference
13-209

Chapter 13 - User notes

Chapter 13 - User notes

13-210
 eXLerate 2010 advanced topics reference

Chapter 13 - User notes

eXLerate 2010 advanced topics reference
13-211

Chapter 13 - User notes

13-212
 eXLerate 2010 advanced topics reference

Chapter 13 - User notes

